Technical Memorandum

Hydroplaning Crash Study and Mitigation Strategies Phase I

Prepared By:

Al-Ahad Ekram, PE, PTOE

Prepared for: Florida's Turnpike Enterprise

August 2018

Table of Contents

1.		Introduction								
2	Scope of the Phase I Study									
3.		Lite	rature Review	2						
4.	. Study Methodology									
5.		Data	Collection and Preparation							
	5.	1.	Five-Year Crash Data	6						
	5.	2.	Rainfall Data	7						
	5.	3.	Speed Data	7						
	5.4	4.	Roadway Geometry Data	8						
6.		Hyd	roplaning Theory	8						
	6.	1.	Background	8						
	6.	2.	Florida Practice for Hydroplaning	9						
7.		Site	Selection Results	. 10						
	7.	1.	Initial Screening by Hotspot Mapping	. 10						
	7.	2.	Final Site Selections	. 17						
		7.2.2	l Florida's Turnpike	. 17						
		7.	2.1.1 Summary of Selected Sites	. 17						
		7.	2.1.2 Speed Profile	. 19						
		7.	2.1.3 Crash Distribution by Rainfall Intensity	. 20						
		7.	2.1.4 Crash Distribution by Lane	.21						
		7.	2.1.5 Economic Value of Crash	.22						
		7.2.2	2 Other Corridors	.23						
		7.	2.2.1 Summary of Selected Sites	.23						
		7.	2.2.2 Speed Profile	.25						
		7.	2.2.3 Crash Distribution by Rainfall Intensity	. 26						
			· · ·							

	7	7.2.2.4 Crash Distribution by Lane	27
	7	7.2.2.5 Economic Value of Crash	28
8.	Cor	mparative Study – Control Sites	
8	3.1.	Control Site Selection	
8	3.2.	Crash Rate Comparison	
	8.2.	1 Predictive Method	
	8.2.	2 Wet Weather Crash Rate Comparison	31
9.	Cor	nclusions	33
Ref	erenc	ces	

List of Tables

Table 1. Initial Selected Sites – Florida's Turnpike	11
Table 2. Initial Selected Sites – Other Corridors	12
Table 3. Hydroplaning Crash and Theoretical Hydroplaning – Florida's Turnpike Sites	18
Table 4. Crash Frequency by Rainfall – Florida's Turnpike Sites	21
Table 5. Crash Frequency by Lanes – Florida's Turnpike Sites	22
Table 6. Economic Value of Crashes – Florida's Turnpike Sites	23
Table 7. Hydroplaning Crash and Theoretical Hydroplaning – Other Corridors	24
Table 8. Crash Frequency by Rainfall – Other Corridor Sites	27
Table 9. Crash Frequency by Lanes – Other Corridor Sites	28
Table 10. Economic Value of Crashes – Other Corridor Sites	29
Table 11. HSM Predictive Method – Expected Crash Rates	31
Table 12. Wet Weather Crash Rate – Florida's Turnpike Sites	32
Table 13. Wet Weather Crash Rate – Other Corridor Sites	32
Table 14. Wet Weather Crash Rate – Control Sites (Six Lanes)	32

List of Figures

Figure 1. Study Methodology	5
Figure 2. Hydroplaning Phenomena	9
Figure 3. Wet Weather Crash Hotspots – Florida's Turnpike	. 13
Figure 4. Wet Weather Crash Hotspots – I-95	. 14
Figure 5. Wet Weather Crash Hotspots – I-275	. 15
Figure 6. Wet Weather Crash Hotspots – I-4	. 16
Figure 7. Speed Profile at the Time of Crash – Florida's Turnpike Sites	. 19
Figure 8. Speed Profile at the Time of Crash – Other Corridor Sites	. 25

Appendices

- Appendix A Map of Weather Stations
- Appendix B Typical Sections for Florida's Turnpike Sites
- Appendix C Crash Data for 6 Sites Florida's Turnpike
- Appendix D High Crash Segment List (2011-2013) Florida's Turnpike
- Appendix E Hydroplaning Formula Calculation Results for each Site
- Appendix F Excerpts from FDOT Plans Preparation Manual Crash Cost
- Appendix G Typical Sections for Other Corridor Sites
- Appendix H Crash Data for 6 Sites Other Corridors
- Appendix I Typical Sections for the Control Sites
- Appendix J Highway Safety Manual (2010) Expected Crash Rate Analysis Outputs

1. Introduction

Florida's Turnpike Enterprise (FTE) is evaluating the current practice of analyzing and possible mitigation of hydroplaning related crashes and hydroplaning risk. Dynamic hydroplaning is a condition where one or more tires of a vehicle completely lose contact with the pavement due to a layer of water film between the tire and the pavement surface. The uplift caused by this phenomenon typically occurs at high speeds, moderate to high rainfall events, and slower time of drainage during such rainfall events causing water film to accumulate. A combination of roadway geometric elements can cause water from draining off the travel lanes slower than ideal, thus contributing to a higher water film thickness. Such a water film causes a vehicle to hydroplane with the driver losing control of the vehicle completely or partially.

The study stemmed from a need for FTE to provide insight into the locations and frequency of hydroplaning crashes with wide typical sections along Florida's Turnpike facilities and to provide mitigating strategies and offset hydroplaning risks so that a more efficient process can be achieved for project coordination between FTE and design consultants. Currently, several Turnpike facilities are under design for widening, including managed lane additions. The outcomes of this study will identify any need for possible modifications in design, hydroplaning calculation strategy or establish pathways for mitigation strategies to be identified to mitigate hydroplaning risk. This report summarizes the Phase I of the two-phase study. Phase I of the study deals with analysis of hydroplaning crashes on facilities within the State of Florida and identifying the crash characteristics, spatial and temporal variations of these crashes, and traffic characteristics at the times of these crashes. In addition, Phase I also evaluates the hydroplaning theory and the formula used by FTE. Based on the findings of the Phase I study, Phase II will identify possible mitigation strategies for the hydroplaning crashes. HNTB Corporation, as the General Engineering Consultant for FTE, was tasked to perform Phase I and Phase II of this study. The Phase II study will propose mitigation strategies, provide guidelines to obtain concurrence on governing criteria for hydroplaning, provide comparison and benefit cost estimates for different mitigation strategies, and propose guidelines to address hydroplaning scenario during the design process. This Phase I technical memorandum details the study scopes and methodology, provides a summary of the crash analysis and operational characteristics for different hydroplaning crash sites.

2. Scope of the Phase I Study

The scope of the Phase I study is as follows:

- Identify existing facilities owned by the Department that have eight or more lanes (combined both direction, including auxiliary lanes) to establish specific sites;
- Review available five-year complete crash data on the selected existing facilities;
- Identify locations on the selected facilities to analyze for hydroplaning crashes;
- Correlate the crash data with relevant weather conditions data;
- Select a mix of tangent and superelevated sections based on the crash analysis;
- Provide insights into roadway and traffic characteristic of the selected sites relevant to hydroplaning;
- Evaluate the hydroplaning formula in practice for the selected sites and compare results.

3. Literature Review

Hydroplaning crashes are prevalent in different regions across the world. In the U.S., majority of the states with moderate to heavy rainfalls have reported crashes that can be related to hydroplaning scenarios. As a result, various agencies and researchers have analyzed crash patterns, weather conditions, location characteristics, operational conditions and the theory of hydroplaning. As part of this Phase I study, a comprehensive list of relevant literatures were reviewed.

Yassin et al. (2013) assessed the reliability of predicting hydroplaning risk based on crash data on several Florida interstate highways. The study also evaluated PAVDRN, a computer software package developed under the National Cooperative Highway Research Program (NCHRP) sponsorship to determine the threshold hydroplaning speeds on a given section of a highway during a specific rainfall event. The study showed that PAVDRN was accurate in predicting a hydroplaning crash more than 60% of the time. However, the study also addresses external factors associated with hydroplaning crashes that are not included in the PAVDRN's analytical model. A similar study was also performed by *Gunaratne et al. (2012)*, where the researchers performed validation of the available hydroplaning prediction models with several field studies on Florida highways at different rainfall intensities. The study also analyzed hydroplaning crashes on the field study spots and compared the results with the empirical models as well as PAVDRN. They concluded that wider sections are more likely to produce hydroplaning crashes, dense-graded pavements are more likely to induce conditions conducive to hydroplaning than open-graded ones, and the field skid test results yielded similar water film thicknesses for hydroplaning thresholds as the empirical models.

Villiers et al. (2012) evaluated driver behavior in the state of Florida using a driving simulator. The study found that even though drivers slowed down during major rainfall intensities that were simulated, the speed was not significantly slow. The PAVDRN predicted hydroplaning speeds are lower than what the drivers have exhibited in the simulator study.

NCHRP 15-55 (2017) report provided guidelines to predict and mitigate dynamic hydroplaning on roadways. In this two-phase study, the investigators analyzed the approaches used for assessing hydroplaning potential on new and existing roads, for predicting the water film thickness on road surfaces, and for modeling the response of the vehicle. The study proposed a methodology for developing an integrated hydroplaning model that uses and integrates the most appropriate surface water drainage, tire, vehicle, and fluid dynamic models to predict the hydroplaning risk for new and existing roads. This study also developed an outline for a guide to assess and mitigate hydroplaning potential and a plan for developing accompanying tools and guidance. The second part of this study is currently underway and will illustrate the proposed format for a hydroplaning risk assessment tool to apply the results of the integrated model in practice in addition to a guide mitigating hydroplaning potential.

The purpose of the *NCHRP 1-29 (1998)* study was to identify techniques to improve the drainage of multilane highway pavements and to develop guidelines for implementing the most promising of these techniques. This study conducted laboratory skid testing on different concrete and asphalt surfaces. The study used the surface MTD, water film thicknesses and friction values obtained from the controlled tests on various surfaces in the field and used them in the PAVDRN formula to predict hydroplaning threshold speeds.

Ivey et al. (1975) researched the reduction of visibility due to different rainfall intensities. The researchers provided experimental designs and compared the levels of visibility at incremental rainfall intensities. Based on the study results, the researchers recommended using different rainfall intensities for specific designs of highways. *Ekram (2009)* conducted research on reduced visibility related crashes due to inclement weather and provided a crash severity model based on historical crashes within the State of Florida. In addition, this study also developed a sliding window analysis methodology for identifying crash clusters/ "hotspots" along any facility. For a list of the references that has been used in this Phase I study, refer to the "References" section at the end of this document.

4. Study Methodology

Phase I of this study was based on the following methodology:

- Selection of corridors for initial sites with good sample size of wet weather crashes
- Data collection:
 - a. Crash data for the latest available five years
 - b. Weather data from weather stations at close proximity to the crash sites
 - c. Traffic speed data at the time of the crashes
 - d. After initial screening of crashes, collection of crash reports to identify relevant crashes
 - e. After the initial selection of sites, collection of roadway data (e.g., as-built plans, typical sections, survey data as available)
 - f. SunGuide speed data was also collected to analyze the mean vehicle speed and 85th percentile speed at the time of the crash
- Creation of GIS maps for all the wet weather-related crashes for selected facilities
- Based on clustering method used in previous research, identify crash clusters/"hotspots" for wet weather crashes in sections with four-lanes or more in each direction
- Initial selection of sites based on the identified clusters
- Further screening of number of crashes by removing unrelated crashes by reviewing the crash reports
- Present results of the final selected locations for:
 - a. Frequency of hydroplaning crashes and all crashes per location
 - b. Location of crash lanes
 - c. Crash frequency by rainfall intensities
 - d. Theoretical speed threshold by using hydroplaning formula
 - e. Wet weather rate of crashes

- For a controlled experiment for comparison, identify non-wide sections (three-lanes each way) for the same facility within the closest proximity of the selected hydroplaning crash sites
- Provide comparative analysis for the selected sites with hydroplaning crashes vs. the control sites.

Figure 1 illustrates a brief schematic diagram of the study methodology.

Figure 1. Study Methodology

5. Data Collection and Preparation

This section discusses the data collection sources, process of data acquisition and preparation of the data for various stages of analysis. Crash data, rainfall intensities, crash reports, roadway characteristics inventory data, GIS data layers, traffic speed data, and roadway geometry data were obtained.

5.1. Five-Year Crash Data

Crash data was obtained for the interstate and Turnpike facilities for the latest available five years from 2011 to 2015. Crash data was obtained from FDOT Crash Analysis Reporting System (CARS) as well as Signal Four Analytics crash data inventory. The primary purpose of this study was to identify locations with wide sections (four-lanes or more each direction) with high free-flow speeds that are potentially susceptible to hydroplaning and, thereby, hydroplaning related crashes. As such, an initial reconnaissance was performed to identify corridors with high frequency of wet weather crashes. Based on this initial survey, the following corridors were selected for initial site selections:

- Florida's Turnpike (including Homestead Extension of Florida's Turnpike [HEFT])
- I-95 (from US 1 to Florida/Georgia State line)
- I-275 (from I-4 to I-75)
- I-4 (from I-275 to I-95)

Crash data was obtained for these corridors from 2011 to 2015. The number of lanes was verified with the typical sections present at the time of the crash between 2011 to 2015. Crash data was filtered based on the following parameters in the crash database relevant to hydroplaning study:

- Number of lanes at the time of crash occurrence
 - > Four lanes or higher in each direction
 - Auxiliary lanes included
- Weather
 - > Rain
- Visibility
 - Vision not obstructed
 - Inclement weather
- Road surface condition
 - Standing water
- Maximum posted speeds
 - Values greater than 55 mph (initial selection)
- Alcohol/drug involvement
 - None

5.2. Rainfall Data

Based on previous research, the possibility of hydroplaning increases with the increase in rainfall intensity. This study looked at the frequency of moderate to heavy rainfall events that can induce potential hydroplaning. To correlate wet weather crash data with the rainfall intensity, rainfall data was downloaded from the closest weather stations available within a 10-mile radius or less from the selected sites. Rainfall site selection algorithm was based on modified Thiessen Polygons method, derived based on the research by Jayasooriya et al. (2013). By employing Thiessen polygons, this study assumed that the weather condition within the polygon is represented by the weather data that would have been collected at a weather station at the centroid of the polygon and the weather is uniform throughout the polygon. These assumptions are appropriate for a sufficient number of weather stations within a polygon, and the polygons are to be accurately representative of the average weather condition within them. However, a few polygons demarcated in this study are significantly large due to the relatively large spacing of weather stations in some areas. In this study, a smaller buffer radial length of 10 miles was used to capture more accurate rainfall intensities. The available rainfall data had various degree of resolutions ranging from 15-min intervals to 1-hr intervals. To maintain accuracy of the time of crash occurrence, the lowest available resolution of data was used for the correlation of rainfall to the crashes. The following sources of data were used for rainfall intensities:

- South Florida Water Management District historical rainfall records (provision 15-minute rainfall)
- National Centers of Environmental Information (a NOAA repository) (15-minutes or 1-hr rainfall as available)
- Weather Underground weather data inventory (www.wunderground.com)

Prevalence of the various degrees of rainfalls were categorized based on the previous researches within Florida and the theoretical rainfall intensities used in the hydroplaning calculations by FDOT. **Appendix A** provides a map of the weather stations within the proximity of the sites of hydroplaning crashes.

5.3. Speed Data

Traffic speed was collected from the Regional Integrated Transportation Information System (RITIS) data repository. RITIS is a data-driven platform for transportation analysis, monitoring, and data visualization that collects and stored data from the DOTs. Speed data in RITIS is provided by the FDOT maintained SunGuide software.

In order to analyze the prevailing speeds of the crashes that was reported to have occurred due to hydroplaning, speed data was an important parameter to investigate. Historical speeds from 2011 to 2015 were recorded from the nearest SunGuide detectors that are available in the proximity of the crash sites. From the detectors, data was extracted for the closest possible timestamp just before the recorded occurrence of the crash so that a reasonable speed of the traffic stream can be related to the traveling vehicles involved in the crash. Crash reports were also investigated to record the speed of the vehicles involved. However, due to the inconsistencies observed in the speed values in the crash reports, SunGuide data was deemed more reliable and was assigned to each crash event for further analysis. Outlier speeds (i.e., bad data detection or unrealistic speeds) were excluded from the statistics.

5.4. Roadway Geometry Data

After the review of the crash reports and traffic data, roadway geometry data was collected from FTE for the final selected sites. The relevant data was provided in the form of as-built plans, existing plans or surveys, as available.

6. Hydroplaning Theory

6.1. Background

The purpose of this section is to provide a technical detail of the hydroplaning phenomenon and the factors that directly or indirectly affect this phenomenon. If dynamic hydroplaning occurs to all wheels simultaneously, the vehicle loses all traction and can be susceptible to crash. As the tire moves over a wet surface, the bulk of the water is normally removed by the normal force of the tire squeezing the water from beneath the tire footprint through the grooves in the tire and the texture in the pavement. Dynamic hydroplaning usually occurs at speeds above 45 mph (*Glennon, 2015*).

Drivers who experience hydroplaning are surprised by the sudden loss of directional control due to such phenomena. Hydroplaning occurs under a wide variety of wet weather conditions. Although sudden loss of control can occur under heavy rainfall with high vehicle speeds, it can also occur after rainfall ceases with moderately high vehicle speeds on pavements with very little texture. In addition, hydroplaning can occur with moderate rainfall and moderate speeds where pavement wheel ruts with long pavement drainage paths allow critical water film thickness depths. Crashes involving hydroplaning becomes more apparent as roadway speeds increases, wider pavements are built, and greater pavement wear occurs because of greater traffic and heavier loads. Although hydroplaning is a very complex phenomenon, it is known to be associated with several factors. The likelihood of hydroplaning on wet pavements increases with roadway and environmental factors that increase water film thickness and with driver and vehicle factors that increase the sensitivity to water film thickness. The major factors are:

- Roadway
 - Width of contributing pavement
 - Roadway curvature
 - Pavement cross-slope
 - Longitudinal depressions
 - Compacted wheel ruts
 - Pavement texture and material
 - Longitudinal pavement slope

- Driver factors
 - Speed
 - Acceleration
 - Braking
 - > Steering
- Environmental factors
 - Rainfall intensity
 - Rainfall duration
 - > Oil, fuel and other contaminants on the pavement surface
- Vehicle factors
 - Tire Treadwear, traction and temperature ratings
 - > Tire pressure
 - > Vehicle type

Source: crashforensics.com

Figure 2. Hydroplaning Phenomena

6.2. Florida Practice for Hydroplaning

To assure road safety and predict hydroplaning scenarios, different model combinations have been developed to estimate the dynamic hydroplaning risk. At very early stages during the above development, studies focused more on the empirical relationships, while more analytical methods have been developed subsequently. Agencies in Florida use a computer software, PAVDRN, which was initially developed by the Pennsylvania Transportation Institute as part of the *NCHRP project 1-29*. The program is used widely by

highway engineers to estimate critical hydroplaning speeds along roadway sections. PAVDRN's mathematical model uses data of rainfall intensity, horizontal alignment of the road, cross section information, and pavement surface properties to calculate a water film thickness along the roadway cross section. Then, PAVDRN can estimate the threshold speed at which hydroplaning would be triggered.

PAVDRN uses an empirical form of the *Galloway (1979)* proposed equation for water film thickness and an empirical equation for hydroplaning speed prediction. The equations are:

$$t = \frac{0.003726L^{0.519}I^{0.562}MTD^{0.125}}{S^{0.364}} - MTD$$

where t = Water film thickness (in)

L = Plane length of flow path (ft)

MTD = Mean texture depth (in)

I = Rainfall intensity (in/hr)

S = Pavement slope (ft/ft)

 $v_p = 26.04t^{-0.259}$, for film thickness < 0.1 inch

 $v_p = 3.09A$, for film thickness > 0.1 inch

$$A = higher \ of \begin{cases} \left[\frac{10.409}{t^{0.06}} + 3.507\right] \\ \left[\frac{28.952}{t^{0.06}} - 7.817\right] MTD^{0.14} \end{cases}$$

where v_p = Hydroplaning speed (mph)

t = Water film thickness (in)

MTD = Mean texture depth (in)

7. Site Selection Results

7.1. Initial Screening by Hotspot Mapping

All hydroplaning crashes between 2011 and 2015 were plotted in GIS using the spatial information obtained from the FDOT CARS and Signal Four Analytics website. To identify crash clusters for further site selection, previously established methodology for spatial analysis tools were investigated. Previous researchers (*Chainey and Tatcliffe, 2005; Ekram, 2008*) have used Kernel Density Estimation (KDE) spatial analysis technique to identify crash clusters on the basis of spatial dependency. The KDE method was used in combination with sliding window technique to minimize computation time.

Sliding window analysis is a method that identifies roadway segments/spots with high frequency of crashes. The segment length (the sliding window size) and the increment length were defined by the several iterations between 0.5-mile to 2-mile window. The end result in this case was a suitable length where the number of crashes is maximum keeping the roadway segment of uniform characteristics. The frequencies

of hydroplaning crashes were counted within the window. It was found that a 0.5-mile segment length is optimum which serves both the purposes of uniform segment and number of hydroplaning related crashes to the maximum. A GIS map was then plotted with the segments being color-coded according to the frequency of hydroplaning crashes in each 0.5-mile window.

KDE method was applied to identify the crash clusters within the GIS. The GIS analysis was supplemented with the data from Roadway Characteristics Inventory (RCI) with posted speeds and number of lanes for the analysis corridors. **Figures 3 through 6** provide the results of the clusters identified for Florida's Turnpike, I-95, I-275 and I-4, respectively.

Based on the cluster analysis, 18 sites were selected for further evaluation of hydroplaning crashes and roadway characteristics. **Table 1** provides the summary of the sites for Turnpike and **Table 2** provides the summary of the sites for other corridors.

No		Location Description	Mile point	Speed Limit (mph)	No of lanes	Type of Section
1		HEFT- North of Coral Reef Dr	16.5	60	8	Curve
2		HEFT- North of Coral Way	24.5	60	8	Tangent
3		HEFT- Tamiami Trail	25.5	60	9	Tangent
4	pike	North of Miami Gardens Dr	1.75	65	12	Curve
5	da's Turn	South of County Line Rd	2.5	65	10	Tangent
6	Flori	North of 595	56.5	65	12	Tangent
7	North of Oakland Park Blvd		62.0	65	8	Curve
8		SR 528	256.0	70	8	Curve
9		East of Daniel Weber Parkway	267.0	70	12	Curve

Table 1. Initial Selected Sites – Florida's Turnpike

No		Location Description	Mile point	Speed Limit (mph)	No of lanes	Type of Section
1		Hallandale Beach Blvd	17.0	65	10	Curve
2		South of Taft St	21.0	65	10	Curve
3	95	North pf Sunrise Blvd	33.5	65	12	Curve
4	<u> </u>	Hillsborough Blvd	42.0	65	8	Curve
5		South of Glades Rd	45.5	65	10	Curve
6		South of Forest Hill Blvd	66.0	65	12	Curve
7	75	13 th Avenue North	23.0	65	8	Curve
8	I-2	N of 13 th Ave North	25.3	65	8	Curve
9	1-4	Central Florida Parkway	70.5	60	8	Tangent

Table 2. Initial Selected Sites – Other Corridors

Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC, © OpenStreetMap contributors, and the GIS User Community

Legend

7.2. Final Site Selections

After the initial selection of the 18 sites among Turnpike and other corridors, crash reports were obtained for all the wet weather crashes that occurred within the clusters of these sites. The main purpose of the investigation of the crash reports were to identify "false positives" in the crash database (i.e., crashes that are not related to possible hydroplaning). In addition, construction zones were identified for the analysis time periods and crashes were eliminated for the time periods when a selected site was under any type of construction. The primary factors that were identified as false positives for further screening of hydroplaning crashes are:

Low visibility due to rain: Drivers have reported that they did not apply brake or made any correction to the path of travel when the crash occurred, and the primary reason according to the driver was that the visibility was obstructed due to heavy rainfall. As such, hydroplaning was not a contributing factor to these crashes even though the rainfall intensity at the time of these crashes could induce hydroplaning. These crashes were eliminated from the final selection of crashes.

<u>Alcohol and/or drug use</u>: Crashes that were reported to have occurred under the influence of alcohol, drug or both were eliminated from the final selection.

<u>Distracted driving</u>: Crashes where distracted driving was the primary reason during the crash and brakes were not applied before the crashes have occurred were removed from the final selection of crashes.

<u>Vehicle malfunction unrelated to hydroplaning</u>: Some drivers reported pre-existing vehicular conditions related to brakes at the time of the crashes. Vehicular conditions that were unrelated to hydroplaning induction were identified as false positives. Such crashes were removed from the final selection of crashes.

Other than the false positives, sites were also investigated and revised based on non-recurring events (very low frequency of wet weather crashes).

After reviewing of the crash reports and eliminating false positives, a total of 12 sites were selected for all the corridors. Out of the 12, six sites were selected on Turnpike and the remaining sites were on the other corridors. The following sections detail the locations and crash characteristics.

7.2.1 Florida's Turnpike

7.2.1.1 Summary of Selected Sites

Six sites were identified along Florida's Turnpike that were prone to hydroplaning crashes between 2011 and 2015. Majority of the sites were located in the South Florida region with one site in the Central Florida region. Of the six sites, three were located within tangent sections and the others were located within curve sections. **Table 3** lists the sites along Florida's Turnpike along with the characteristics obtained from the plans and surveys between year 2011 and 2015. **Appendix B** contains the typical sections of the Turnpike corridor, and **Appendix C** provides the crash data for the sites.

A total of 427 wet weather crashes were recorded at the six Turnpike sites. Out of the 427 crashes, 160 crashes were related to hydroplaning. Of the 160 crashes, 52 were reported as injury crashes and the

remaining 108 crashes were property damage only. No fatal crashes were reported among these sites. All the sites were listed in the FTE produced high crash locations list for 2011-2013 (**Appendix D**).

The hydroplaning formula (discussed in Section 6.2) was applied to each of the sites based on the geometric characteristics. A rainfall intensity of 2 inch/hour was used for the theoretical hydroplaning calculations. The 2 inch/hour stems from the fact that the correlation of more crashes with higher rainfall intensities is consistent with the 2 inch/hour rainfall event being the controlling storm intensity in hydroplaning calculations. The formula used were based on the PAVDRN software for hydroplaning speed calculations. The PAVDRN provides hydroplaning threshold speeds, which were then compared to the predicted driver speeds at the rainfall intensity. The predicted driver speeds are obtained by anticipated reductions from the design speed of 70 mph. For Site 1, formula results do not predict hydroplaning to occur based on design speeds of 60 or 65 mph. For Site 2, the formula does not predict hydroplaning to occur for design speed of 60 mph, but does predict hydroplaning for a design speed of 65 mph. **Table 3** also shows the results for the theoretical hydroplaning for the sites along Turnpike. **Appendix E** provides the values used in the PAVDRN hydroplaning formula and the results.

#	Location	Mile point	Speed Limit (mph)	No of Ianes	Type of Section	Design Speed (mph)	Total Wet Weather Crashes	No of Hydro- planing Crashes	Cross Slope	Longi tudinal Slope	e	Hydro- planing Risk by Formula
1	HEFT- North of Coral Reef Dr	16.5	60	8	Curve	60/65*	94	17	2-6.7%	0.5%	6.7%	No/No
2	HEFT- Tamiami Trail	25.5	60	9	Tangent	60/65*	76	30	2-3%	0%	-	No/Yes
3	North of Miami Gardens Dr	1.75	65	12	Curve	70	21	11	2.8%	0%	2.8%	Yes
4	South of County Line Rd	2.5	65	10	Tangent	70	13	7	2-3%	0.2%	-	Yes
5	North of 595	56.5	65	12	Tangent	70	179	61	2-3%	0.02%	-	Yes
6	East of Daniel Webster Pkwy	267.0	70	12	Curve	70	44	34	2-4.5%	0.05%	4.5%	Yes

Table 3. Hydroplaning Crash and Theoretical Hydroplaning – Florida's Turnpike Sites

* Design speeds obtained from initial design and updated design plans

7.2.1.2 Speed Profile

Traffic stream speeds were obtained for the time just prior to the occurrence of the hydroplaning event so that the speed recorded is representative of the crash at a site. Closest available speed detectors were located from the SunGuide based on the locations of the crash sites and the 85th percentile speeds were calculated for all the crash events that occurred at a site. The speeds were verified with the police reports as available. **Figure 7** illustrates a plot of the recorded speeds in relation to the posted speeds, design speeds and hydroplaning threshold speeds for 1 inch/hour and 2 inch/hour rainfall events. The threshold speeds are calculated based on the PAVDRN software formula as discussed in Section 6.2.

(a) Crashes below 2-in/hr Rainfall

(b) Crashes at or above 2-in/hr Rainfall

Figure 7. Speed Profile at the Time of Crash – Florida's Turnpike Sites

The figure is split into **Figure 7a** and **7b** to clearly distinguish the speed profiles above and below the 2 inch/hour rainfall event. From **Figure 7a**, the 85th percentile speeds at the time of crash indicate that the hydroplaning crashes have occurred at speeds above 70 mph for all the sites for the rainfall events of below 2 inch/hour. In **Figure 7b**, the 85th percentile speeds show that drivers were traveling at slightly reduced speeds during rainfall events of 2 inch/hour or higher compared to **Figure 7a**. The observations show that drivers were traveling above the posted speed limits at all the sites. The traveling speeds were also above the theoretical predicted hydroplaning threshold speeds of 53 mph (for 65 mph design speed) and 58 mph (for 70 mph design speed) at 2 inch/hour rainfall events, and above the theoretical predicted hydroplaning threshold speed) and 62 mph (for 70 mph design speed) at 1 inch/hour rainfall events. The observed speeds support the fact that the 58 mph and 62 mph hydroplaning threshold speeds are justified for design purposes, as no crash was observed occurring at speeds below the hydroplaning threshold speeds.

Crashes occurring well above the hydroplaning threshold suggests that the presence of modern safety technologies such as advanced tires, Vehicle Stability Assist (VSA), Electronic Stability Control (ESC), and traction control systems perhaps have improved the performance of the vehicles during the hydroplaning events at lower speeds. Also, the evolution of tire technologies possibly have assisted the drivers in recovering during hydroplaning situations at lower speeds (*Fwa et al., 2009*), thereby avoiding a crash occurrence.

7.2.1.3 Crash Distribution by Rainfall Intensity

Previous studies showed that the majority of the hydroplaning crashes occurred at moderate to heavy rainfall events. Most of the previous research have taken empirical rainfall intensities for hydroplaning scenarios, as the hydroplaning inducing rainfall threshold can vary based on the site conditions. For this study, a minimum rainfall intensity of 1 inch/hour was initially used as a filter for hydroplaning crashes, as defined by a recent research study within Florida (*Gunaratne et al., 2012*). For the current study, a review of the wet weather crash reports revealed that several weather stations along the study corridors reported 0.9-1 inch/hour of rainfall during hydroplaning scenarios. As such, wet weather crashes were also reviewed below the stated hydroplaning rainfall event. Based on historical rainfall distributions in the State of Florida and rainfall intensities associated to hydroplaning occurrences, crashes were distributed between rainfalls of 0.9 inch/hour to over 2 inch/hour rainfalls. **Table 4** presents the crash frequencies by rainfall intensities for Turnpike sites.

#	# Location Description		Mile point	Total Hydrop- Ianing Crashes	0.9-1 in/hr	1-1.5 in/hr	1.5-2 in/hr	>=2 in/hr
1		HEFT- North of Coral Reef Dr	16.5	17	4	3	8	2
2		HEFT- Tamiami Trail	25.5	30	3	6	9	12
3	Turnpike	North of Miami Gardens Dr	1.75	11	1	4	3	3
4	Florida's	South of County Line Rd	2.5	7	1	2	2	2
5		North of 595	56.5	61	10	26	2	23
6		East of Daniel Webster Pkwy	267.0	34	4	11	8	11
				Overall	23 (14%)	52 (33%)	32 (20%)	53 (33%)

Crash distribution in **Table 4** indicates that over 50% of the hydroplaning related crashes occurred at rainfall intensities of 1.5 inch/hour or over. This is consistent with the use of 2 inch/hour of rainfall intensities in the PAVDRN empirical formula. As noted before, correlation of more crashes with higher rainfall intensities is consistent with the 2 inch/hour rainfall event being the controlling storm intensity in hydroplaning calculations, and not the only intensity that can be used in the PAVDRN formula.

7.2.1.4 Crash Distribution by Lane

Table 5 provides a distribution of the crashes by travel lane locations. Refer to **Appendix B** for the typical sections of the Turnpike sites. Based on the theory of hydroplaning, the lowest elevation of a typical section should be susceptible to the highest degree of hydroplaning. Therefore, the lowest elevation lanes (i.e., innermost lanes on a left-turning curve, outermost lanes on a right-turning curve) are expected to have the higher frequencies of hydroplaning crashes. The data shown in **Table 5** supports this assumption, as the majority of the crashes (about 76% of total) have occurred in the lowest lane or adjacent to the lowest lane

for the sites. Some of the sites showed slightly higher crash frequencies for the adjacent lane compared to the lowest lanes. It is possible that the higher crashes were due to speed differentials, maneuvers because of auxiliary lane presence, or simply due to higher traffic in the adjacent lane. However, the crash frequencies in the lower lanes are much higher than the highest lanes for all the sites.

#	# Location Description		Mile point	Type of Section	Total Hydrop -laning Crashes	Lowest Lane	Adjacent to Lowest Lane	Middle Lanes	Adjacent to Highest Lane	Highest Lane
1		HEFT- North of Coral Reef Dr	16.5	Curve	17	5	6	4	1	1
2		HEFT- Tamiami Trail	25.5	Tangent	30	7	14	7	0	2
3	Turnpike	North of Miami Gardens Dr	1.75	Curve	11	5	3	2	1	0
4	Florida's	South of County Line Rd	2.5	Tangent	7	3	4	0	0	0
5		North of 595	56.5	Tangent	61	21	27	7	3	3
6		East of Daniel Webster Pkwy	267.0	Curve	34	11	14	5	2	2
					Overall	52 (33%)	68 (43%)	25 (16%)	7 (4%)	8 (5%)

Table 5. Crash Frequency by Lanes – Florida's Turnpike Sites

7.2.1.5 Economic Value of Crash

Hydroplaning crash costs were calculated based on the FDOT Plans Preparation Manual (PPM) historical cost method (*PPM Chapter 23-29*, see **Appendix F**). **Table 6** provides the cost per site for the Turnpike corridors. Based on the PPM cost for Turnpike facilities, a total of \$40.78 million is estimated to be the cost of the hydroplaning crashes that have occurred in these six sites between 2011 and 2015.

#	Location Description		Mile point	Type of Section	Hydrop- laning Crashes	All Crashes	Cost of Hydroplaning Crashes * (in \$Million)
1		HEFT- North of Coral Reef Dr	16.5	Curve	17	56	\$4.33
2		HEFT- Tamiami Trail	25.5	Tangent	30	62	\$7.65
3	Turnpike	North of Miami Gardens Dr	1.75	Curve	11	21	\$2.80
4	Florida's	South of County Line Rd	2.5	Tangent	7	13	\$1.78
5		North of 595	56.5	Tangent	61	179	\$15.55
6		East of Daniel Webster Parkway	267.0	Curve	34	44	\$8.67

Table 6. Economic Value of Crashes – Florida's Turnpike Sites

* Note: Average Crash Cost based on FDOT PPM 2017 (23-29) for Turnpike - \$254,951

7.2.2 Other Corridors

7.2.2.1 Summary of Selected Sites

Six sites were identified along the other corridors that were prone to hydroplaning crashes between 2011 and 2015. Majority of the sites were located in the south Florida region on I-95, with two sites in the west Florida region on I-275. All six sites were located within curve sections. **Table 7** lists the sites along the other corridors including site characteristics that were obtained from the plans and surveys between year 2011 and 2015. **Appendix G** contains the typical sections of the other corridors.

A total of 647 wet weather crashes were recorded at the six sites. Out of the 647 crashes, 136 crashes were related to hydroplaning. Of the 136 crashes, 58 were reported as injury crashes and the remaining 78 crashes were property damage only. No fatal crashes were reported among these sites. **Appendix H** contains the hydroplaning crash data for these sites.

The hydroplaning formula (discussed in Section 6.2) was applied to each of the sites based on the geometric characteristics. A rainfall intensity of 2 inch/hour was used for the theoretical hydroplaning calculations. The 2 inch/hour stems from the fact that the correlation of more crashes with higher rainfall intensities is

consistent with the 2 inch/hour rainfall event being the controlling storm intensity in hydroplaning calculations. The formula used were based on the PAVDRN software for hydroplaning speed calculations. The PAVDRN provides hydroplaning threshold speeds, which were then compared to the predicted driver speeds at the rainfall intensity. The predicted driver speeds are obtained by anticipated reductions from the design speeds based on the rainfall intensity. The results indicated that for sites 2, 3 and 4, the formula predicted hydroplaning for the design speed of 70 mph. the formula did not predict hydroplaning to occur for Site 1, 5 and 6 based on design speed of 65 mph. **Table 7** shows the results for the theoretical hydroplaning for the sites along the other corridors. **Appendix E** provides the values used in the PAVDRN hydroplaning formula and the results.

#	Location Description		Mile point	Speed Limit (mph)	No of lanes	Type of Section	Design Speed (mph)	Total Wet Weather Crashes	No of Hydro- planing Crashes	Cross Slope	Longi tudinal Slope	е	Hydro- planing Risk by Formula
1		Hallandale Beach Blvd	17.0	65	10	Curve	60/65*	340	22	2-3%	2.7%	3%	No/No
2	95	North of Sunrise Blvd	33.5	65	12	Curve	70	73	23	2%	0.1%	4.7%	Yes
3	-	South of Glades Rd	45.5	65	10	Curve	70	64	12	2-3%	0.18%	3.7%	Yes
4		South of Forest Hill Blvd	66.0	65	12	Curve	70	68	29	2-3%	0.08%	5.4%	Yes
5	75	13 th Avenue North	23.0	65	8	Curve	65	54	24	2%	0.2%	6.2%	No
6	I-2	N of 13 th Ave North	25.3	65	8	Curve	65	48	26	2%	0.2%	6.2%	No

Table 7. Hydroplaning Crash and Theoretical Hydroplaning – Other Corridors

* Design speeds obtained from initial design and updated design plans

7.2.2.2 Speed Profile

Traffic stream speeds were obtained just prior to the occurrence of the hydroplaning event so that the speed recorded is representative of the crash at a site. Closest available speed detectors were located from the SunGuide based on the locations of the crash sites and the 85th percentile speeds were calculated for all the crash events that occurred at a site. The speeds were verified with the police reports as available. **Figure 8** provides a plot of the recorded speeds in relation to the posted speeds, design speeds and hydroplaning threshold speeds for 1 inch/hour and 2 inch/hour rainfall events. The threshold speeds are calculated based on the PAVDRN software formula as discussed in Section 6.2.

(a) Crashes below 2-in/hr Rainfall

(b) Crashes below 2-in/hr Rainfall

Figure 8. Speed Profile at the Time of Crash – Other Corridor Sites

The figure is split into **Figure 8a** and **8b** to clearly distinguish the speed profiles above and below the 2 inch/hour rainfall event. From **Figure 8a**, the 85th percentile speeds at the time of crash show that the hydroplaning crashes have occurred at speeds of around 70 mph for the sites in the I-95 and I-275 for the rainfall events of below 2 inch/hour. In **Figure 8b**, the 85th percentile speeds show that drivers were traveling at slightly reduced speeds during rainfall events of 2 inch/hour or higher compared to **Figure 8a**. The observations show that drivers were traveling above the posted speed limits at all the sites. The traveling speeds were also above the theoretical predicted hydroplaning threshold speeds of 53 mph (for 65 mph design speed) and 58 mph (for 70 mph design speed) at 2 inch/hour rainfall events, and above the theoretical predicted hydroplaning threshold speeds of 57 mph (for 65 mph design speed) at 1 inch/hour rainfall events. The observed speeds support the fact that the 58 mph and 62 mph hydroplaning threshold speeds are justified for design purposes, as no crash was observed occurring at speeds below the hydroplaning threshold speeds.

Similar to the Florida's Turnpike sites, crashes occurring well above the hydroplaning threshold depicts that presence of modern safety technologies such as advanced tires, VSA, ESC and traction control systems perhaps have improved the performance of the vehicles during the hydroplaning events at lower speeds. Also, the evolution of tire technologies possibly have assisted the driver in recovering during hydroplaning situations at lower speeds (*Fwa et al., 2009*), thereby avoiding a crash occurrence.

7.2.2.3 Crash Distribution by Rainfall Intensity

Similar to the sites along Florida's Turnpike, for the current study, a review of the wet weather crash reports revealed that several weather stations along the study corridors reported 0.9-1 inch/hour of rainfall during hydroplaning scenarios. As such, wet weather crashes were also reviewed below the stated hydroplaning rainfall event. Based on historical rainfall distributions in Florida and rainfall intensities associated to hydroplaning occurrences, crashes along the other corridors were distributed between rainfalls of 0.9 inch/hour to over 2 inch/hour rainfalls. **Table 8** presents the crash frequencies by rainfall intensities for the other corridors.

Crash distribution in **Table 8** shows that over 60% of the hydroplaning related crashes occurred at rainfall intensities of 1.5 inch/hour or over. This is consistent with the use of 2 inch/hour of rainfall intensities in the PAVDRN empirical formula. As noted before, correlation of more crashes with higher rainfall intensities is consistent with the 2 inch/hour rainfall event being the controlling storm intensity in hydroplaning calculations, and not the only intensity that can be used in the PAVDRN formula.

#		Location Description	Mile point	Total Hydropl- aning Crashes	0.9-1 in/hr	1-1.5 in/hr	1.5-2 in/hr	>=2 in/hr
1		Hallandale Beach Blvd	17.0	22	3	8	6	5
2	95	North of Sunrise Blvd	33.5	23	3	5	6	9
3	<u> </u>	South of Glades Rd	45.5	12	3	2	4	3
4		South of Forest Hill Blvd	66.0	29	3	9	7	10
5	75	13 th Avenue North	23.0	24	1	6	8	9
6	I-2	N of 13 th Ave North	25.3	26	2	7	10	7
			37 (27%)	41 (30%)	43 (32%)			

Table 8. Crash Frequency by Rainfall – Other Corridor Sites

7.2.2.4 Crash Distribution by Lane

Table 9 provides a distribution of the crashes by the location of the lanes. Refer to **Appendix G** for the typical sections of the other corridor sites. Based on the theory of hydroplaning, the lowest elevation of a typical section should be susceptible to the highest degree of hydroplaning. Therefore, the lowest elevation lanes (i.e., innermost lanes on a left-turning curve, outermost lanes on a right-turning curve) are expected to have the higher frequencies of hydroplaning crashes. The data in **Table 9** supports this assumption, as majority of the crashes (about 76% of total) have occurred at the lowest lane or adjacent to the lowest lane for the sites. Some of the sites showed slightly higher crash frequencies for the adjacent lane compared to the lowest lanes. It is possible that the higher traffic in the adjacent lane. However, the crash frequencies in the lower lanes are much higher than the highest lanes for all the sites.

#	Location Description		Mile point	Type of Section	Total Hydropl- aning Crashes	Lowest Lane	Adjacent to Lowest Lane	Middle Lanes	Adjacent to Highest Lane	Highest Lane
1		Hallandale Beach Blvd	17.0	Curve	22	5	9	5	2	1
2	95	North of Sunrise Blvd	33.5	Curve	23	10	6	3	2	2
3	-1	South of Glades Rd	45.5	Curve	12	7	3	2	0	0
4		South of Forest Hill Blvd	66.0	Curve	29	13	8	4	2	2
5	75	13 th Avenue North	23.0	Curve	24	14	7	1	1	1
6	.71	N of 13 th Ave North	25.3	Curve	26	16	5	2	2	1
Overall						65 (48%)	38 (28%)	17 (13%)	9 (7%)	7 (5%)

Table 9. Crash Frequency by Lanes – Other Corridor Sites

7.2.2.5 Economic Value of Crash

Hydroplaning crash costs were calculated based on the FDOT Plans Preparation Manual historical cost method (*PPM 2017, Chapter 23-29,* see **Appendix F**). **Table 10** provides the cost per site for the other corridors. Based on the PPM cost for interstate facilities, a total of \$46.48 million is estimated to be the cost of the hydroplaning crashes that have occurred in these six sites between 2011 and 2015.

#	Location Description		Mile point	Type of Section	Hydrop- laning Crashes	All Crashes	Cost of Hydroplaning Crashes (in \$Million)
1		Hallandale Beach Blvd	17.0	Curve	22	73	\$7.52
2	95	North of Sunrise Blvd	33.5	Curve	23	73	\$7.86
3)-	South of Glades Rd	45.5	Curve	12	53	\$4.10
4		South of Forest Hill Blvd	66.0	Curve	29	68	\$9.91
5	I-275	13 th Avenue North	23.0	Curve	24	54	\$8.20
6		N of 13 th Ave North	25.3	Curve	26	48	\$8.89

Table 10. Economic Value of Crashes – Other Corridor Sites

* Note: Average Crash Cost based on FDOT PPM 2017 (23-29) for Interstate - \$341,754

8. Comparative Study – Control Sites

The purpose of the Phase I study was to identify crash sites with four or more lanes in each direction that have exhibited hydroplaning induced crashes. Based on the observations discussed in Chapter 7, several sites were found with recurrent hydroplaning related crashes along Florida's Turnpike, I-95 and I-275. However, a comparison of crash rates for hydroplaning crashes as a percentage of wet weather crashes can be performed between the selected sites and sections with six lanes (both directions), so that a magnitude of crash rates can be determined. The regular sections with six lanes therefore can be cited as control sites, and hydroplaning crash rates were compared against the crash rates of the control sites. This section describes the results of this comparison study.

8.1. Control Site Selection

Controls sites were selected along the Turnpike with a combination of straight segment and curve segment for a fair sample size. Six-lane sites were sought in close proximity to the hydroplaning crash sites along the Turnpike within the south Florida region so that the weather conditions were similar to what were observed at the crash sites during the same time frames between 2011 and 2015. The following six lane (i.e., three lanes each way) sections were selected as control sites:

- Turnpike north of Atlantic Boulevard Mile point 67.0, curve section
- Turnpike south of Copans Road Mile point 69.0, curve section
- Turnpike south of Glades Road Mile point 45.5, tangent section

Appendix I contains the typical sections for the control sites.

8.2. Crash Rate Comparison

A comparative risk assessment was performed for the hydroplaning crashes for the different width of roadway typical sections. Crash rate comparisons were performed using an empirical modeling method as well as from the actual wet weather crash rates obtained for the control sites and study sites. The following subsections describes the methods and the results.

8.2.1 Predictive Method

Predictive methods for crash analysis are used to predict crash rates for different roadway features. American Association of State Highway and Transportation Officials (AASHTO) has published a guidebook, Highway Safety Manual (2010) to provide empirical models and crash modification factors so that practitioners can use them to predict crash rates. For this study, HSM 2010 predictive methods for freeways (as published in *NCHRP 17-45*) were used to estimate expected crash rates among different alternatives of roadway number of lanes between six-lane, eight-lane and ten-lane roadways.

Although the purpose of this predictive method analysis was to provide crash rates, HSM 2010 does not provide any safety performance function (SPF) for modifying number of lanes. Moreover, no SPF and CMF exists for hydroplaning type of crashes. As such, Annual Average Daily Traffic (AADT) was used as a surrogate safety parameter to predict the crash rate. The AADTs were obtained for the selected crash sites along the Turnpike and the control sites on the same facility.

Based on the HSM 2010 methods, total crash rates were calculated for the six, eight and ten-lane sections along the Turnpike. The hydroplaning crash rates were calculated by applying the hydroplaning crash ratios for the six, eight and ten-lane typical sections to the total crash rates that were obtained from the HSM method.

Table 11 provides the results of the expected crash analysis. From the results, it is evident that the rate of hydroplaning crash increase at a much higher degree from a six to eight and eight to ten-lane sections compared to the rates for the total crashes between these sections. Based on these findings, it can be surmised that during a hydroplaning inducing wet weather condition, rate of occurrence of hydroplaning crashes is much higher in wide roadway sections of eight lanes or more compared to narrow sections of six lanes or less.

#		Location Description	HSM 2010 Predicted Annual Crash Rate (All Types of Crashes)	Predicted Hydroplaning Annual Crash Rate		
1	pike	Typical Six Lane Section	58.8	6.9		
2	a's Turn	Typical Eight Lane Section	81.1 (38% increase over 6-lane)	22.7 (229% increase over 6-lane)		
3	Florid	Typical Ten Lane Section	96.5 (19% increase over 8-lane)	30.7 (35% increase over 8-lane)		

Table 11. HSM Predictive Method – Expected Crash Rates

Appendix J provides the spreadsheets for the HSM predictive analysis for this study.

8.2.2 Wet Weather Crash Rate Comparison

Crash rates were compared for the sites along Turnpike and other corridors with the crash rates of the control sites. **Tables 12 through 14** summarize the wet weather crash rates for the selected sites and the control sites. For the Turnpike sites, the average wet weather crash rate between 2011 and 2015 was about 33.7%. For the sites in the other corridors, the average wet weather crash rate was about 33.8%. However, for the control sites, the average wet weather crash rate was about 11.6% for the period between 2011 and 2015.

The results show there is an increased likelihood of hydroplaning induced crashes for wide roadway sections with eight lanes or more (i.e., four lanes or more in each direction) compared to six lane sections (i.e., three lanes in each direction) during moderate to heavy rainfall events. These results are in line with the predictive crash analysis that were shown in **Table 11**.
#		Location Description	Type of Section	Mile point	Wet Weather Crash % (Out of Total)
1		HEFT- North of Coral Reef Dr	Curve	16.5	26.9%
2	ex	HEFT- Tamiami Trail	Tangent	25.5	43.9%
3	Turnpi	North of Miami Gardens Dr	Curve	1.75	22.6%
4	orida's	South of County Line Rd	Tangent	2.5	20.3%
5	FIG	North of 595	Tangent	56.5	48.5%
6		East of Daniel Webster Pkwy	Curve	267.0	40.0%

Table 12. Wet Weather Crash Rate – Florida's Turnpike Sites

Table 13. Wet Weather Crash Rate – Other Corridor Sites

#		Location Description	Type of Section	Mile point	Wet Weather Crash % (Out of Total)
1		Hallandale Beach Blvd	Curve	17.0	29.7%
2	95	North of Sunrise Blvd	Curve	33.5	29.6%
3	-	South of Glades Rd	Curve	45.5	31.7%
4		South of Forest Hill Blvd	Curve	66.0	39.5%
5	75	13 th Avenue North	Curve	23.0	37.2%
6	-5	N of 13 th Ave North	Curve	25.3	35.0%

Table 14. Wet Weather Crash Rate – Control Sites (Six Lanes)

#		Location Description	Type of Section	Mile point	Wet Weather Crash % (Out of Total)
1	npike	North of Atlantic Blvd	Curve	67.0	13.1%
2	a's Tur	South of Copans Rd	Curve	69.0	14.7%
3	Florid	South of Glades Rd	Tangent	45.5	7.1%

9. Conclusions

FTE initiated a hydroplaning crash study to provide insight into the locations and frequency of hydroplaning crashes with wide typical sections along Florida's Turnpike facilities so that a more efficient process can be achieved for project coordination between FTE and design consultants. Currently, several Turnpike facilities are under design for widening, including additions of managed lanes. The output of this study will identify any need for possible modifications in design, hydroplaning calculation strategy or establish pathways for mitigation strategies to be identified to mitigate hydroplaning related crashes. This report summarizes the Phase I of the two-phase study. Phase I deals with analysis of hydroplaning crashes on facilities within the State of Florida and identifying the crash characteristics, spatial and temporal variations of these crashes, and traffic characteristics at the times of these crashes. Phase I also evaluates the hydroplaning theory and the formula that is used by FTE.

This Phase I study identified existing facilities owned by the Department that have eight or more lanes (combined both direction, including auxiliary lanes) and selected a total of 12 sites that experienced hydroplaning induced crashes from year 2011 to 2015. The crash data were combined with relevant weather conditions data to provide insights into roadway and traffic characteristic of the selected sites relevant to hydroplaning. This study also evaluated the PAVDRN empirical formula in practice for the selected sites and compared results against the actual hydroplaning crash rates. Finally, crash rates for the selected sites were compared to crash rates for six-lane control sites within the same timeframe and weather conditions. In addition, HSM 2010 predictive method was utilized with surrogate safety measures to assess crash rates between different number of lanes on Turnpike.

The key observations of this Phase I study are:

- Based on comparative statistics with the control sites (which are six-lane facilities in the proximity of the selected sites), selected wider sections had about 33.7% of wet weather crashes compared to about 11.6% of wet weather crashes in the six-lane sections;
- Expected hydroplaning crash rate increases about 229% from a six-lane to an eight-lane section, and about 35% from an eight-lane to a ten-lane section;
- Hydroplaning crash frequencies were greater in the lower lanes than the higher lanes;
- For some of the sections, adjacent lane to the lowest lane had slightly higher crash frequency than the lowest lane as some of the lowest lanes are auxiliary lanes;
- For majority of the study sites, a design speed of 65 mph triggers hydroplaning in the PAVDRN empirical hydroplaning formula;
- Speeds observed at the time of the hydroplaning induced crashes showed that drivers were travelling
 at greater than posted speed limits at the time of crashes. It is possible that modern technologies in
 vehicle safety features as well as improved tires have prevented some possible crashes in hydroplaning
 conditions at lower speeds;
- The observed speeds were also above the PAVDRN empirical hydroplaning threshold speeds for 1 inch/hour and 2 inch/hour rainfall intensities;

 More than 50% of the hydroplaning crashes occurred during rainfall intensities of 1.5 inch/hour or over. This is consistent with the use of 2 inch/hour of rainfall intensities in the PAVDRN empirical formula. It is important to note that correlation of more crashes with higher rainfall intensities is consistent with the 2 inch/hour rainfall event being the controlling storm intensity in hydroplaning calculations, and not the only intensity that can be used in the PAVDRN formula.

Based on the outcome of this Phase I study, Phase II of the study will propose mitigation strategies, provide guidelines to obtain concurrence on governing criteria for hydroplaning, provide comparison and benefit cost estimates for different mitigation strategies, and propose guidelines to address hydroplaning scenario during the design process.

References

- 1. FDOT Plans Preparation Manual, 2017, Vol 1, Chapter 2, Section 2.1.5.1
- 2. Gunaratne, M., et al. "Hydroplaning on multi lane facilities". No. BDK84 977-14. 2012.
- 3. Yassin, Menna, Waruna Jayasooriya, and Manjriker Gunaratne. "Assessment of the Reliability of Predicting Hydroplaning Risk Based on Past Hydroplaning Accident Data on the Florida Interstate System." Transportation Research Record: Journal of the Transportation Research Board 2369 (2013): 104-113.
- 4. Ekram, Al-Ahad. "*Reduced visibility related crashes in Florida: crash characteristics, spatial analysis and injury severity.*" (2009).
- 5. Mounce, John M., and Richard T. Bartoskewitz. "*Hydroplaning and roadway tort liability*." *Transportation Research Record* 1401 (1993).
- 6. Earp and Renna. *Hydroplaning Presentation*. FDOT Design Expo 2014.
- Khan G., Santiago-Chaparro, K.R., Qin, X. and Noyce, D. A. Application and Integration of Lattice Data Analysis, Network K-functions, and GIS to study Ice-related Crashes. Preprint No. TRB 09-3674, 87th Annual Meeting of the Transportation Research Board, January 2009.
- 8. Villiers, Claude, et al. *Evaluation of Driver Behavior to Hydroplaning in the State of Florida Using Driving Simulation*. No. BDQ22 977-01. 2012.
- 9. NCHRP Project 15-55: Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. 2017.
- 10. Ben-Edigbe, Johnnie, Nordiana Mashros, and Raha Rahman. "*Extent of sight distance reductions caused by rainfall on single carriageway roads*." International Journal for Traffic and Transport Engineering 3.3 (2013): 291-301.
- 11. Jayasooriya, Waruna, and Manjriker Gunaratne. "*Evaluation of Widely Used Hydroplaning Risk Prediction Methods Using Florida's Past Crash Data*." Transportation Research Record: Journal of the Transportation Research Board 2457 (2014): 140-150.
- 12. Anderson, David A., et al. Improved Surface Drainage of Pavements. No. Project 1-29,. 1998.
- 13. Ivey, Don L., Eero K. Lehtipuu, and J. W. Button. "*Rainfall invisibility--the view from behind the wheel*." Journal of safety research 7.4 (1975): 156-169.
- 14. Gallaway, B.M., Ivey, D.L., Hayes, G.G., Ledbetter, W.G., Olson, R.M., Woods, D.L. and Schiller, R.E., *"Pavement and Geometric Design Criteria for Minimizing Hydroplaning"*, FHWA RD-79-31, 1979, pp. 278.
- Anderson, D.A., Huebner, R.S., Reed, J.R., Warner, J.C., and J.J.Henry. *Improved Surface Drainage of Pavements, The Pennsylvania Transportation Institute*. National Cooperative Highway Research program, Transportation Research Board National Research Council, NCHRP Web-Only Document (Project 1-29), University Park, PA, 1998.
- 16. Chainey, S., and Ratcliffe, J. GIS and Crime Mapping, John Wiley and Sons, UK, 2005.

17. Fwa, T., Kumar, S., Anupam, K., & Ong, G. (2009). *Effectiveness of tire-tread patterns in reducing the risk of hydroplaning*. Transportation Research Record: Journal of the Transportation Research Board, (2094), 91-102.

Appendix A

Map of Weather Stations

Source: wunderground.com

Source: wunderground.com

Source: wunderground.com

Appendix B

Typical Sections for Florida's Turnpike Sites

<u>SITE 4- FLORIDA'S TURNPIKE S OF COUNTY LINE RD</u>

SITE 5- FLORIDA'S TURNPIKE N OF I-595

TANGENT SECTION DESIGN SPEED=70 MPH

SITE 6- FLORIDA'S TURNPIKE E OF DANIEL WEBSTER PKWY

12'	12'	12'	12'	12'	10'
2%	3%	3%	3%	3%	
					5

Appendix C

Crash Data for 6 Sites – Florida's Turnpike

Crash_Nun	Calendar_	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_T	Roadway_l	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
819869340	2011	5/14/2011	1500	6	7	15	15190000	5.336	1209	0	MI	Ν
828250770	2011	9/6/2011	1855	2	7	15	15190000	5.346	1227	0	MI	S
820902060	2011	6/24/2011	2238	5	7	15	15190000	5.389	1227	0	MI	N
828250840	2011	9/10/2011	1230	6	5 7	15	15190000	5.56	1077	0	MI	Ν
820730680	2011	10/31/2011	605	1	. 7	15	15190000	5.573	1077	0	MI	Ν
828254410	2011	9/22/2011	2308	4	. 7	15	15190000	6.027	1081	0	MI	Ν
831706820	2012	6/25/2012	220	1	. 7	15	15190000	5.478	3678	0	MI	S
829099240	2012	6/1/2012	1008	5	7	15	15190000	5.599	1077	0	MI	Ν
820437450	2012	6/24/2012	1300	7	7	15	15190000	5.877	1080	0	MI	Ν
831565420	2012	5/24/2012	2127	4	. 7	15	15190000	6.144	1083	0	MI	S
833124670	2013	7/5/2013	1506	5	7	15	15190000	5.346	1227	0	MI	S
833051160	2013	5/1/2013	1510	3	7	15	15190000	5.484	3678	0		
837843470	2014	6/10/2014	1954	2	. 7	15	15190000	5.539	4180	0	MI	S
837480030	2014	3/24/2014	815	1	. 7	15	15190000	5.589	1077	0	MI	Ν
844873000	2014	8/22/2014	1323	5	7	15	15190000	5.819	1079	0	MI	Ν
845468800	2015	3/23/2015	835	1	. 7	15	15190000	5.308	1209	0	MI	S
848721420	2015	2/28/2015	1033	6	5 7	15	15190000	5.319	1209	0	MI	Ν
845550730	2015	4/28/2015	938	2	. 7	15	15190000	5.478	3678	0	MI	S
851519120	2015	8/31/2015	1330	1	. 7	15	15190000	5.589	1077	0	MI	Ν
851510040	2015	9/29/2015	36	2	. 7	15	15190000	5.819	1079	0	MI	Ν
851512060	2015	8/15/2015	1555	6	7	15	15190000	5.819	1079	0	MI	N
852001500	2015	11/22/2015	1220	7	7	15	15190000	5.819	1079	0	MI	N
851600880	2015	9/27/2015	1610	7	7	15	15190000	5.824	1079	0	MI	N
851195580	2015	7/14/2015	1135	2	7	15	15190000	5.828	1079	0	MI	N

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
822536070.0	2011.0000	7/17/2011	2018.0	7.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
822566310.0	2011.0	9/29/2011	650.0	4.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
828219240.0	2011.0	10/8/2011	910.0	6.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
828229910.0	2011.0	12/13/2011	15.0	2.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
820001610.0	2011.0	4/5/2011	2339.0	2.0	4.0	86.0	86070000.0	0.6	1524.0	0.1	MI	N
828137570.0	2011.0	10/19/2011	1805.0	3.0	4.0	86.0	86070000.0	0.9	1477.0	0.1	MI	S
820934730.0	2011.0	3/29/2011	19.0	2.0	4.0	86.0	86070000.0	1.0	1523.0	0.0	MI	S
822459760.0	2011.0	8/24/2011	859.0	3.0	4.0	86.0	86070000.0	1.0	1523.0	0.0	MI	S
820004100.0	2011.0	1/21/2011	1547.0	5.0	4.0	86.0	86070000.0	1.1	1523.0	0.0	MI	N
820308950.0	2011.0	1/26/2011	948.0	3.0	4.0	86.0	86070000.0	1.3	1522.0	0.0	MI	N
820648560.0	2011.0	3/28/2011	2055.0	1.0	4.0	86.0	86070000.0	1.3	1522.0	0.0	MI	N
820943920.0	2011.0	5/6/2011	412.0	5.0	4.0	86.0	86070000.0	1.4	1478.0	0.0	MI	N
822743590.0	2011.0	8/1/2011	1637.0	1.0	4.0	86.0	86070000.0	1.4	1478.0	0.1	MI	N
828538430.0	2011.0	12/10/2011	246.0	6.0	4.0	86.0	86070000.0	1.6	1875.0	0.0	MI	N
820874760.0	2011.0	4/24/2011	133.0	7.0	4.0	86.0	86070000.0	1.7	1875.0	0.1	MI	N
828445880.0	2011.0	11/20/2011	825.0	7.0	4.0	86.0	86070000.0	3.6	1484.0	0.0	MI	S
845210890.0	2014.0	12/5/2014	937.0	5.0	4.0	86.0	86070000.0	0.2	8008.0	0.2	MI	N
844848050.0	2014.0	10/4/2014	1650.0	6.0	4.0	86.0	86070000.0	1.0	1523.0	0.0	MI	S
838144280.0	2014.0	9/20/2014	434.0	6.0	4.0	86.0	86070000.0	1.6	1875.0	0.0		
844827060.0	2014.0	9/20/2014	449.0	6.0	4.0	86.0	86070000.0	1.6	1875.0	0.1	MI	N
838144260.0	2014.0	9/18/2014	2249.0	4.0	4.0	86.0	86070000.0	1.7	1875.0	0.1	MI	Ν
837573290.0	2014.0	3/25/2014	340.0	2.0	4.0	86.0	86070000.0	1.4	1478.0	0.0	MI	N

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1 Fi	inal_Meas	Crash_Loca
822735290	2011	40791	1647	1	4	86	86070000	12	1890	0 M	11	Ν
820308790	2011	40669	940	5	4	86	86070000	12	1890	0 M	11	Ν
820710770	2011	40733	856	6	4	86	86070000	12	1890	0 M	11	Ν
822733690	2011	40764	2018	2	4	86	86070000	12	1890	0 M	11	Ν
819969410	2011	40586	1135	6	4	86	86070000	12	1525	0 M	11	S
831818220	2012	41175	439	7	4	86	86070000	12	1890	0 M	11	Ν
831855040	2012	41242	709	4	4	86	86070000	12	1890	0 M	11	Ν
828890450	2012	41047	1950	5	4	86	86070000	12	1890	0 M	11	Ν
831548490	2012	41157	1918	3	4	86	86070000	12	1890	0 M	11	Ν
828757440	2012	41083	2013	6	4	86	86070000	12	1525	0 M	11	S
831458840	2012	41080	41	3	4	86	86070000	12	1525	0 M	11	S
833279630	2013	41483	315	7	4	86	86070000	12	1890	0 M	11	Ν
837177820	2013	41599	9	4	4	86	86070000	12	1890	0 M	11	Ν
837177840	2013	41599	140	4	4	86	86070000	12	1890	0 M	11	Ν
836730630	2013	41542	1336	3	4	86	86070000	12	1890	0 M	11	Ν
836824930	2013	41586	2035	5	4	86	86070000	12	1525	0 M	11	S
838164990	2014	41826	911	7	4	86	86070000	12	1936	0 M	11	S
845194240	2014	41953	316	1	4	86	86070000	12	1890	0 M	11	Ν
845030330	2014	41896	400	7	4	86	86070000	12	1890	0 M	11	Ν
845562340	2014	41999	1709	5	4	86	86070000	12	1890	0 M	11	Ν
845706590	2015	42141	1009	7	4	86	86070000	12	1890	0 M	11	N
851755810	2015	42269	2115	2	4	86	86070000	12	1890	0 M	11	N
852250290	2015	42343	230	6	4	86	86070000	12	1890	0 M	11	N

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
838151640	2014	41899	1720	3	4	93	93220000	2	2127	0	MI	Ν
822443550	2011	40677	1755	6	4	93	93220000	2	2158	0	MI	S
828233120	2011	40804	17	7	4	93	93220000	2	2158	0	MI	S
836427630	2013	41459	2238	4	4	93	93220000	2	2158	0	MI	S
837096300	2013	41599	300	4	4	93	93220000	2	2158	0	MI	S
848840790	2015	42202	1902	5	4	93	93220000	2	2158	0	MI	S
819891040	2011	40678	10	7	4	93	93220000	3	2158	0	MI	S
836886600	2013	41609	2210	7	4	93	93220000	3	2158	0	MI	S
822443740	2011	40726	2355	6	4	93	93220000	3	2227	0	MI	S
837074190	2013	41587	255	6	4	93	93220000	3	2227	0	MI	S
836744460	2014	41676	127	4	4	93	93220000	3	2227	0	MI	S
845023170	2014	41908	730	5	4	93	93220000	3	2227	0	MI	S

`	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
852226750	2015	12/4/2015	15	5	4	93	93220000	22	4269	0	MI	Ν
820152620	2011	7/18/2011	1105	1	4	93	93220000	23	2259	0	MI	S
828956990	2012	9/15/2012	1337	6	4	93	93220000	23	2259	0	MI	S
844854960	2014	10/23/2014	340	4	4	93	93220000	23	2215	0	MI	S
828813680	2012	8/11/2012	1839	6	4	93	93220000	23	2259	0	MI	S
819765260	2012	8/12/2012	1520	7	4	93	93220000	23	4272	0	MI	Ν
828673750	2012	2/7/2012	1155	2	4	93	93220000	23	4272	0	MI	Ν
829068450	2013	7/10/2013	354	3	4	93	93220000	23	4272	0	MI	Ν
833029020	2013	7/19/2013	612	5	4	93	93220000	23	4272	0	MI	Ν
833029360	2013	11/9/2013	933	6	4	93	93220000	23	4272	0	MI	Ν
837352960	2014	4/11/2014	1637	5	4	93	93220000	23	4272	0	MI	Ν
838168800	2014	7/15/2014	1200	2	4	93	93220000	23	4272	0	MI	Ν
845009940	2014	9/18/2014	2140	4	4	93	93220000	23	4272	0	MI	Ν
833148620	2015	9/17/2015	830	4	4	93	93220000	23	4272	0	MI	Ν
820150070	2013	1/17/2013	55	4	4	93	93220000	23	2260	0	MI	S
832824610	2013	2/16/2013	56	6	4	93	93220000	23	2260	0	MI	S
848841730	2015	6/3/2015	1330	3	4	93	93220000	23	2216	0	MI	Ν
836922240	2013	12/14/2013	446	6	4	93	93220000	23	2260	0	MI	S
831726340	2012	8/25/2012	400	6	4	93	93220000	23	2216	0	MI	Ν
836561550	2013	9/13/2013	430	5	4	93	93220000	23	2216	0	MI	Ν
837086760	2013	11/20/2013	710	3	4	93	93220000	23	2216	0	MI	Ν
845009820	2014	9/11/2014	2321	4	4	93	93220000	23	2217	0	MI	S
833054870	2013	6/9/2013	1416	7	4	93	93220000	23	2217	0	MI	S
828150870	2012	4/13/2012	330	5	4	93	93220000	23	2217	0	MI	S
831770330	2012	10/2/2012	1711	2	4	93	93220000	23	2217	0	MI	S
831964110	2012	9/22/2012	1115	6	4	93	93220000	23	2217	0	MI	S
836847430	2013	9/17/2013	1025	2	4	93	93220000	24	2218	0	MI	S
828374670	2012	1/24/2012	500	2	4	93	93220000	24	2218	0	MI	Ν
844807010	2014	7/15/2014	1300	2	4	93	93220000	24	2262	0	MI	Ν

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
822402970	2011	6/24/2011	1230	5	7	15	15190000	7.409	1993	0	MI	N
822639420	2011	8/28/2011	2108	7	7	15	15190000	7.447	1993	0	MI	N
828154890	2011	8/9/2011	1253	2	7	15	15190000	7.541	2022	0	MI	S
822658630	2011	7/16/2011	1600	6	7	15	15190000	7.602	1994	0	MI	N
822679230	2011	8/16/2011	210	2	7	15	15190000	7.602	1994	0	MI	N
828154880	2011	8/9/2011	1425	2	7	15	15190000	7.672	1994	0	MI	N
822773010	2011	9/7/2011	0	3	7	15	15190000	7.842	4182	0	MI	S
831476420	2012	6/22/2012	2110	5	7	15	15190000	7.371	1993	0	MI	Ν
833368820	2013	6/29/2013	1200	6	7	15	15190000	7.452	2022	0	MI	S
833218590	2013	6/25/2013	2234	2	7	15	15190000	7.541	2022	0	MI	S
833132130	2013	9/24/2013	848	2	7	15	15190000	7.552	2022	0	MI	Ν
833384450	2013	7/17/2013	1643	3	7	15	15190000	7.602	1994	0	MI	Ν
837175380	2013	12/29/2013	1446	7	7	15	15190000	7.806	1994	0	MI	Ν
833283590	2013	7/13/2013	1727	6	7	15	15190000	7.818	1994	0	MI	Ν
832897460	2013	4/29/2013	59	1	7	15	15190000	8.092	2020	0	MI	Ν
836722510	2013	9/14/2013	1555	6	7	15	15190000	8.242	1996	0	MI	Ν
836544970	2013	7/26/2013	1031	5	7	15	15190000	8.304	2018	0	MI	S
844783870	2014	9/17/2014	923	3	7	15	15190000	7.55	2022	0		
844742740	2014	8/23/2014	1500	6	7	15	15190000	7.827	1994	0	MI	Ν
851876280	2015	8/30/2015	2139	7	7	15	15190000	7.409	1993	0	MI	Ν
851519050	2015	7/17/2015	1048	5	7	15	15190000	7.552	2022	0	MI	Ν
837825300	2015	3/27/2015	1800	5	7	15	15190000	7.602	1994	0	MI	Ν
845366550	2015	2/28/2015	1100	6	7	15	15190000	7.731	1994	0	MI	Ν
851891180	2015	9/28/2015	1811	1	7	15	15190000	7.818	1994	0	MI	N
845247670	2015	2/9/2015	1520	1	7	15	15190000	7.823	1994	0	MI	N
851165010	2015	6/9/2015	2321	2	7	15	15190000	8.19	1996	0	MI	S

Appendix D

High Crash Segment List (2011-2013) - Florida's Turnpike

2011-2013 High Crash Segment List

						Cr	ash Rate/Cr	ash Freque	ncy	Economic Cost						Rank	
State Road	From MP	То МР	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank	PDO	Injury	Fatal	-	Total Cost	Rank	Sum of Ranks	Final Rank
SR 91	0	1	281	75800	3	3.385501	1	93.67	1	\$1,404,000	\$23,433,258	\$-	\$	24,837,258	14	16	2
SR 91	1	2	65	75800	3	0.783123	40	21.67	34	\$ 292,500	\$ 7,210,233	\$-	\$	7,502,733	111	185	46
SR 91	2	3	46	82000	3	0.512306	129	15.33	66	\$ 182,000	\$ 6,489,210	\$-	\$	6,671,210	124	319	87
SR 91	3	4	19	82300	3	0.210834	375	6.33	188	\$ 78,000	\$ 2,523,582	\$-	\$	2,601,582	238	801	286
SR 91	47	48	36	107500	3	0.30583	297	12.00	91	\$ 149,500	\$ 4,686,652	\$-	\$	4,836,152	162	550	175
SR 91	48	49	36	107500	3	0.30583	297	12.00	91	\$ 149,500	\$ 4,686,652	\$-	\$	4,836,152	162	550	175
SR 91	49	50	96	111200	3	0.78841	38	32.00	18	\$ 448,500	\$ 9,733,815	\$-	\$	10,182,315	94	150	34
SR 91	50	51	89	111700	3	0.72765	59	29.67	21	\$ 357,500	\$12,257,397	\$-	\$	12,614,897	67	147	32
SR 91	51	52	59	111700	3	0.482375	149	19.67	43	\$ 234,000	\$ 8,291,768	\$-	\$	8,525,768	107	299	82
SR 91	52	53	62	111700	3	0.506902	133	20.67	39	\$ 234,000	\$ 9,373,303	\$-	\$	9,607,303	100	272	72
SR 91	53	54	105	111700	3	0.858464	29	35.00	13	\$ 403,000	\$15,141,490	\$10,100,000	\$	25,644,490	10	52	9
SR 91	54	55	138	103300	3	1.220014	12	46.00	5	\$ 565,500	\$17,665,072	\$20,200,000	\$	38,430,572	3	20	3
SR 91	55	56	139	103300	3	1.228854	10	46.33	4	\$ 630,500	\$15,141,490	\$-	\$	15,771,990	48	62	15
SR 91	56	57	122	103300	3	1.078563	19	40.67	9	\$ 500,500	\$16,223,025	\$-	\$	16,723,525	40	68	16
SR 91	57	58	57	103300	3	0.503919	136	19.00	45	\$ 260,000	\$ 5,768,187	\$10,100,000	\$	16,128,187	46	227	60
SR 91	58	59	64	103300	3	0.565803	99	21.33	37	\$ 260,000	\$ 8,291,768	\$10,100,000	\$	18,651,768	33	169	39
SR 91	59	60	53	102400	3	0.472674	158	17.67	51	\$ 247,000	\$ 5,407,675	\$-	\$	5,654,675	143	352	101
SR 91	60	61	36	102400	3	0.321062	278	12.00	91	\$ 110,500	\$ 6,849,722	\$-	\$	6,960,222	120	489	147
SR 91	61	62	55	102400	3	0.490511	147	18.33	48	\$ 182,000	\$ 9,733,815	\$-	\$	9,915,815	96	291	80
SR 91	62	63	49	92000	3	0.486401	148	16.33	58	\$ 156,000	\$ 9,012,792	\$-	\$	9,168,792	103	309	84
SR 91	63	64	74	92000	3	0.734564	54	24.67	27	\$ 299,000	\$10,094,327	\$-	\$	10,393,327	92	173	40
SR 91	64	65	30	92000	3	0.297796	304	10.00	120	\$ 104,000	\$ 5,047,163	\$-	\$	5,151,163	159	583	190
SR 91	65	66	35	92000	3	0.347429	254	11.67	97	\$ 130,000	\$ 5,407,675	\$-	\$	5,537,675	148	499	148
SR 91	66	67	43	79000	3	0.497081	142	14.33	77	\$ 162,500	\$ 6,489,210	\$-	\$	6,651,710	125	344	96
SR 91	67	68	30	82000	3	0.334113	268	10.00	120	\$ 97,500	\$ 5,407,675	\$-	\$	5,505,175	151	539	169
SR 91	68	69	41	82000	3	0.456621	174	13.67	80	\$ 162,500	\$ 5,768,187	\$-	\$	5,930,687	134	388	112
SR 91	69	70	53	73700	3	0.656741	66	17.67	51	\$ 156,000	\$10,094,327	\$10,100,000	\$	20,350,327	28	145	30
SR 91	70	71	40	73700	3	0.495654	143	13.33	81	\$ 162,500	\$ 4,686,652	\$20,200,000	\$	25,049,152	13	237	63
SR 91	71	72	70	87400	3	0.73143	56	23.33	31	\$ 227,500	\$12,617,908	\$-	\$	12,845,408	63	150	34
SR 91	72	73	50	87400	3	0.52245	126	16.67	55	\$ 162,500	\$ 9,012,792	\$-	\$	9,175,292	102	283	77
SR 91	73	74	44	87400	3	0.459756	170	14.67	71	\$ 149,500	\$ 7,570,745	\$-	\$	7,720,245	110	351	99
SR 91	74	75	57	87400	3	0.595593	87	19.00	45	\$ 247,000	\$ 6,849,722	\$-	\$	7,096,722	115	247	66
SR 91	75	76	68	87400	3	0.710532	61	22.67	32	\$ 273,000	\$ 9,373,303	\$-	\$	9,646,303	98	191	47
SR 91	76	77	46	81100	3	0.517992	128	15.33	66	\$ 182,000	\$ 6,128,698	\$10,100,000	\$	16,410,698	44	238	64
SR 91	77	78	24	81100	3	0.270257	339	8.00	157	\$ 71,500	\$ 4,686,652	\$ -	\$	4,758,152	170	666	230
SR 91	78	79	30	81100	3	0.337821	258	10.00	120	\$ 97,500	\$ 5,407,675	\$ -	\$	5,505,175	151	529	165
SR 91	79	80	37	81100	3	0.416646	196	12.33	88	\$ 123,500	\$ 6,128,698	\$10,100,000	\$	16,352,198	45	329	90
SR 91	80	81	25	81100	3	0.281517	330	8.33	149	\$ 104,000	\$ 3,244,605	\$ -	\$	3,348,605	207	686	235
SR 91	81	82	30	81100	3	0.337821	258	10.00	120	\$ 84,500	\$ 6,128,698	\$ -	\$	6,213,198	131	509	152
SR 91	82	83	44	76000	3	0.528719	122	14.67	71	\$ 188,500	\$ 5,407,675	\$ -	\$	5,596,175	144	337	92
SR 91	83	84	62	76000	3	0.745013	52	20.67	39	\$ 208,000	\$10,815,350	\$-	\$	11,023,350	85	176	42

						Crash Rate/Crash Frequency							Economic Cos	t			Rank	
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank		PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 91	84	85	40	76000	3	0.480654	151	13.33	81	\$	136,500	\$ 6,849,722	\$-	\$	6,986,222	118	350	98
SR 91	85	86	44	76000	3	0.528719	122	14.67	71	\$	175,500	\$ 6,128,698	\$-	\$	6,304,198	128	321	88
SR 91	86	87	28	76000	3	0.336458	262	9.33	133	\$	97,500	\$ 4,686,652	\$-	\$	4,784,152	168	563	183
SR 91	87	88	32	63700	3	0.458771	171	10.67	114	\$	84,500	\$ 6,849,722	\$-	\$	6,934,222	121	406	124
SR 91	88	89	35	63700	3	0.501781	138	11.67	97	\$	117,000	\$ 6,128,698	\$-	\$	6,245,698	130	365	106
SR 91	89	90	33	63700	3	0.473108	157	11.00	106	\$	130,000	\$ 4,686,652	\$-	\$	4,816,652	164	427	133
SR 91	90	91	30	63700	3	0.430098	184	10.00	120	\$	104,000	\$ 5,047,163	\$-	\$	5,151,163	159	463	142
SR 91	91	92	32	63700	3	0.458771	171	10.67	114	\$	104,000	\$ 5,768,187	\$-	\$	5,872,187	139	424	130
SR 91	92	93	44	63700	3	0.630811	75	14.67	71	\$	110,500	\$ 9,373,303	\$10,100,000	\$	19,583,803	30	176	42
SR 91	93	94	35	60100	3	0.531838	121	11.67	97	\$	136,500	\$ 5,047,163	\$-	\$	5,183,663	155	373	110
SR 91	94	95	47	60100	3	0.714183	60	15.67	63	\$	117,000	\$10,094,327	\$10,100,000	\$	20,311,327	29	152	36
SR 91	95	96	19	60000	3	0.289193	311	6.33	188	\$	65,000	\$ 3,244,605	\$-	\$	3,309,605	212	711	244
SR 91	96	97	49	60000	3	0.745814	49	16.33	58	\$	188,500	\$ 7,210,233	\$-	\$	7,398,733	112	219	58
SR 91	97	98	64	60000	3	0.974125	21	21.33	37	\$	247,000	\$ 9,373,303	\$ -	\$	9,620,303	99	157	37
SR 91	98	99	27	60000	3	0.410959	199	9.00	138	\$	149,500	\$ 1,442,047	\$-	\$	1,591,547	309	646	222
SR 91	99	100	33	56000	3	0.53816	112	11.00	106	\$	130,000	\$ 4,686,652	\$-	\$	4,816,652	164	382	111
SR 91	100	101	50	56200	3	0.812493	32	16.67	55	Ś	175.500	\$ 7.931.257	, \$10.100.000	Ś	18.206.757	35	122	26
SR 91	101	102	34	56200	3	0.552495	105	11.33	102	\$	123,500	\$ 5,407,675	\$ -	\$	5,531,175	149	356	102
SR 91	102	103	31	56200	3	0.503746	137	10.33	118	Ś	110.500	\$ 5.047.163	\$-	Ś	5.157.663	158	413	126
SR 91	103	104	26	56200	3	0.422496	193	8.67	141	Ś	91.000	\$ 4.326.140	\$-	Ś	4.417.140	177	511	155
SR 91	104	105	39	56200	3	0.633744	74	13.00	85	Ś	123.500	\$ 7.210.233	\$-	Ś	7.333.733	113	272	72
SR 91	105	106	22	50200	3	0.400226	203	7.33	168	Ś	65.000	\$ 4.326.140	\$-	Ś	4.391.140	183	554	179
SR 91	106	107	30	50200	3	0.545762	108	10.00	120	Ś	104.000	\$ 4.686.652	, \$10.100.000	Ś	14.890.652	53	281	76
SR 91	107	108	33	50200	3	0.600338	86	11.00	106	Ś	91.000	\$ 6.489.210	\$10.100.000	Ś	16.680.210	41	233	61
SR 91	108	109	28	50200	3	0.509378	130	9.33	133	\$	78.000	\$ 5.768.187	\$ -	\$	5.846.187	142	405	122
SR 91	109	110	21	50200	3	0.382034	220	7.00	172	Ś	65.000	\$ 3.965.628	\$-	Ś	4.030.628	189	581	187
SR 91	110	111	18	39000	3	0.421496	194	6.00	195	\$	58,500	\$ 3.244.605	\$-	\$	3.303.105	213	602	200
SR 91	111	112	17	39000	3	0.39808	205	5.67	207	Ś	39,000	\$ 3,965,628	\$ -	Ś	4,004,628	194	606	205
SR 91	112	113	21	39000	3	0.491746	144	7.00	172	Ś	110.500	\$ 1.442.047	\$ -	\$	1.552.547	310	626	209
SR 91	113	114	25	39000	3	0 585412	89	8 33	149	Ś	104 000	\$ 2 884 093	\$10 100 000	\$	13 088 093	60	298	81
SR 91	114	115	8	39000	3	0.187332	391	2.67	333	Ś	32,500	\$ 1,081 535	\$ -	Ś	1,114 035	354	1078	374
SR 91	115	116	14	39000	3	0 32783	272	4 67	239	Ś	45 500	\$ 2 523 582	\$	\$	2 569 082	245	756	265
SR 91	116	117	13	39000	3	0 304414	300	4 33	255	Ś	26,000	\$ 3 244 605	\$	ې د	3 270 605	215	773	200
SR 91	118	119	8	35500	3	0.205801	380	2.67	237	ې د	32 500	\$ 1 081 535	پ د	ې د	1 114 035	354	1067	369
SR 91	110	120	12	35500	3	0.203001	294	4.00	274	ې د	39,000	\$ 2 163 070	ې د .	ې د	2 202 070	272	840	303
SR 01	120	120	12	35500	2	0.308702	204	4.00	274	ہ د	39,000	\$ 2,103,070	י ל	ہ د	2,202,070	272	8/0	301
	120	121	212 Q	35500	2	0.308702	294	2.67	222	ې د	30,000	\$ 72,103,070		ې د	760 022	282	1005	280
	121	172	15	32200	2	0.203001	216	5.07	222	ې د	78 000	\$ 1 021 E2E		ې د	1 150 525	226	776	300 279
	122	123	10	33300	2 2	0.303011	162	5.00	105	ې د	52 000	\$ 1,001,000 \$ 2,001,000	ィー・ く 10,100,000	ې د	12 206 605	550	//0	127
	123	175	10	22500	2 2	0.405052	205	2.67	202	ې د	15 500	\$ 3,244,003	\$10,100,000 ¢	ې د	1 107 517	217	415	225
	124	125	10	33300	2 2	0.2029/0	240	5.07 2.22	200	ې د	43,300	γ <u>1,44</u> 2,047	ې - د	ې د	1 025 050	200	040	335
SK 91	125	120	10	35500	3	0.23/251	348	3.33	302	ې د	32,500	⇒ 1,8U2,558	> -	ې د	1,035,058	298	948	330
SK 91	126	127	9	35500	3	0.231526	360	3.00	320	Ş	39,000	\$ 1,081,535	Ş -	Ş	1,120,535	351	1031	356

						Cr	ash Rate/Cr	ash Freque	ncy				Economic Cos	st			Ra	nk
State Road	From MP	То МР	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank		PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 91	127	128	15	35500	3	0.385877	216	5.00	224	\$	45,500	\$ 2,884,093	\$-	\$	2,929,593	227	667	231
SR 91	128	129	11	35500	3	0.282976	327	3.67	286	\$	52,000	\$ 721,023	\$10,100,000	\$	10,873,023	86	699	240
SR 91	129	130	12	35500	3	0.308702	294	4.00	274	\$	45,500	\$ 1,442,047	\$10,100,000	\$	11,587,547	76	644	220
SR 91	130	131	15	35500	3	0.385877	216	5.00	224	\$	78,000	\$ 1,081,535	\$-	\$	1,159,535	336	776	278
SR 91	131	132	11	35500	3	0.282976	327	3.67	286	\$	52,000	\$ 1,081,535	\$-	\$	1,133,535	343	956	340
SR 91	132	133	13	35500	3	0.334427	267	4.33	257	\$	45,500	\$ 2,163,070	\$-	\$	2,208,570	269	793	283
SR 91	133	134	14	35500	3	0.360152	240	4.67	239	\$	52,000	\$ 2,163,070	\$-	\$	2,215,070	268	747	262
SR 91	134	135	18	40400	3	0.40689	202	6.00	195	\$	52,000	\$ 3,605,117	\$-	\$	3,657,117	202	599	199
SR 91	135	136	12	40400	3	0.27126	337	4.00	274	\$	58,500	\$ 1,081,535	\$-	\$	1,140,035	341	952	338
SR 91	136	137	14	40400	3	0.31647	288	4.67	239	\$	45,500	\$ 2,523,582	\$-	\$	2,569,082	245	772	272
SR 91	137	138	14	38000	3	0.336458	262	4.67	239	\$	45,500	\$ 2,523,582	\$-	\$	2,569,082	245	746	260
SR 91	138	139	14	38000	3	0.336458	262	4.67	239	\$	78,000	\$ 721,023	\$-	\$	799,023	380	881	316
SR 91	139	140	17	38000	3	0.408556	200	5.67	207	\$	39,000	\$ 3,244,605	\$20,200,000	\$	23,483,605	19	426	132
SR 91	140	141	15	38000	3	0.36049	239	5.00	224	\$	71,500	\$ 1,442,047	\$-	\$	1,513,547	311	774	275
SR 91	141	142	13	38000	3	0.312425	290	4.33	257	\$	32,500	\$ 2,884,093	\$-	\$	2,916,593	230	777	280
SR 91	142	143	17	38000	3	0.408556	200	5.67	207	\$	58,500	\$ 2,884,093	\$-	\$	2,942,593	223	630	212
SR 91	143	144	10	32600	3	0.280136	332	3.33	302	\$	26,000	\$ 2,163,070	\$ -	\$	2,189,070	278	912	325
SR 91	144	145	18	32600	3	0.504244	135	6.00	195	\$	78,000	\$ 2,163,070	\$ -	\$	2,241,070	260	590	194
SR 91	145	146	19	32600	3	0.532258	120	6.33	188	\$	78,000	\$ 2,523,582	\$ -	\$	2,601,582	238	546	173
SR 91	146	147	8	32600	3	0.224108	362	2.67	333	\$	39,000	\$ 721,023	\$ -	\$	760,023	382	1077	373
SR 91	147	148	8	32600	3	0.224108	362	2.67	333	\$	6,500	\$ 2,523,582	\$ -	\$	2,530,082	255	950	337
SR 91	148	149	8	32600	3	0.224108	362	2.67	333	\$	26,000	\$ 1,442,047	\$ -	\$	1,468,047	322	1017	354
SR 91	149	150	9	32600	3	0.252122	349	3.00	320	\$	39,000	\$ 1,081,535	\$ -	\$	1,120,535	351	1020	355
SR 91	150	151	10	32600	3	0.280136	332	3.33	302	\$	26,000	\$ 2,163,070	\$ -	\$	2,189,070	278	912	325
SR 91	151	152	13	32600	3	0.364176	237	4.33	257	\$	39,000	\$ 2,523,582	\$ -	\$	2,562,582	250	744	257
SR 91	152	153	23	32600	3	0.644312	68	7.67	162	\$	91,000	\$ 3,244,605	\$ -	\$	3,335,605	208	438	136
SR 91	153	154	13	26900	3	0.441344	180	4.33	257	\$	45,500	\$ 2,163,070	\$ -	\$	2,208,570	269	706	243
SR 91	154	155	15	26900	3	0.509243	131	5.00	224	Ś	65.000	\$ 1.802.558	\$-	Ś	1.867.558	287	642	217
SR 91	155	156	14	25700	3	0.497486	140	4.67	239	Ś	71.500	\$ 1.081.535	\$-	Ś	1.153.035	338	717	246
SR 91	156	157	13	25700	3	0.461951	164	4.33	257	Ś	65.000	\$ 1.081.535	\$ -	Ś	1.146.535	340	761	268
SR 91	157	158	9	25700	3	0.319812	279	3.00	320	Ś	32.500	\$ 1.442.047	\$ -	Ś	1.474.547	318	917	329
SR 91	158	159	21	25700	3	0.746229	47	7.00	172	Ś	84.500	\$ 2.523.582	\$10,100,000	Ś	12,708,082	64	283	77
SR 91	159	160	12	25700	3	0.426417	188	4.00	274	Ś	58,500	\$ 1.081.535	\$ -	Ś	1.140.035	341	803	287
SR 91	160	161	9	25700	3	0.319812	279	3.00	320	Ś	32,500	\$ 1,442,047	÷ \$ -	Ś	1,474,547	318	917	329
SR 91	162	163	12	25700	3	0.426417	188	4.00	274	Ś	45,500	\$ 1.802.558	\$ -	Ś	1,848,058	294	756	265
SR 91	163	164	10	25700	3	0.355347	242	3,33	302	Ś	45 500	\$ 1,081 535	\$ -	Ś	1,127,035	346	890	318
SR 91	164	165	11	25700	3	0.390882	272	3.67	286	ب د	32 500	\$ 1 802 558	\$10 100 000	रं	11,935,058	74	568	184
SR 91	165	166	15	25700	2	0 533021	115	5.00	274	ې د	58 500	\$ 2 163 070	\$ -	4	2 221 570	265	604	202
SR 91	166	167	15	25700	2	0 533021	115	5.00	224	ہ د	71 500	\$ 1 081 535	\$10 100 000	ب د	11 253 035	205	<u>410</u>	129
SR 01	167	162	16	25700	2	0 568555	Q/	5.00	224	ہ د	65 000	\$ 2 162 070	\$ -	ب د	2 228 070	262	572	125
SR 01	160	170	11	25700	2	0 300882	202	2.67	215	ہ د	39,000	\$ 1 802 558	÷	4	1 8/1 558	205	790	282
	171	170	12	25700	2 2	0.350002	164	1 22	200	ہ د	22 500	\$ 2,002,330	ې - د	ہ د	2 016 502	230	651	202
76 76	1/1	1/2	C1 13	25700	<u>ہ</u>	0.401951	104	4.33	257	ç	52,500	2,004,093 ڊ _ا	- ڊ ا	ç	2,910,993	230	051	225

						Cr	ash Rate/Cr	ash Freque	าсу				Economic Cos	t			Ra	nk
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank		PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 91	172	173	18	25700	3	0.639625	71	6.00	195	\$	84,500	\$ 1,802,558	\$-	\$	1,887,058	285	551	177
SR 91	173	174	13	25700	3	0.461951	164	4.33	257	\$	32,500	\$ 2,884,093	\$-	\$	2,916,593	230	651	225
SR 91	174	175	16	25700	3	0.568555	94	5.33	215	\$	45,500	\$ 3,244,605	\$-	\$	3,290,105	214	523	162
SR 91	175	176	13	25700	3	0.461951	164	4.33	257	\$	58,500	\$ 1,442,047	\$-	\$	1,500,547	313	734	251
SR 91	176	177	15	25700	3	0.533021	115	5.00	224	\$	58,500	\$ 2,163,070	\$-	\$	2,221,570	265	604	202
SR 91	177	178	17	25700	3	0.60409	84	5.67	207	\$	97,500	\$ 721,023	\$-	\$	818,523	379	670	232
SR 91	178	179	16	25700	3	0.568555	94	5.33	215	\$	84,500	\$ 1,081,535	\$-	\$	1,166,035	335	644	220
SR 91	179	180	12	25700	3	0.426417	188	4.00	274	\$	39,000	\$ 2,163,070	\$-	\$	2,202,070	272	734	251
SR 91	180	181	17	25700	3	0.60409	84	5.67	207	\$	39,000	\$ 3,965,628	\$-	\$	4,004,628	194	485	146
SR 91	182	183	16	25700	3	0.568555	94	5.33	215	\$	52,000	\$ 2,884,093	\$-	\$	2,936,093	225	534	167
SR 91	183	184	15	25700	3	0.533021	115	5.00	224	\$	52,000	\$ 2,523,582	\$-	\$	2,575,582	243	582	188
SR 91	184	185	25	25700	3	0.888368	26	8.33	149	\$	123,500	\$ 2,163,070	\$-	\$	2,286,570	257	432	134
SR 91	185	186	14	25700	3	0.497486	140	4.67	239	\$	52,000	\$ 1,802,558	\$10,100,000	\$	11,954,558	73	452	139
SR 91	187	188	8	25700	3	0.284278	317	2.67	333	\$	26,000	\$ 1,442,047	\$ -	\$	1,468,047	322	972	343
SR 91	188	189	10	25700	3	0.355347	242	3.33	302	\$	45,500	\$ 1,081,535	\$ -	\$	1,127,035	346	890	318
SR 91	191	192	9	25700	3	0.319812	279	3.00	320	\$	32,500	\$ 1,442,047	\$ -	\$	1,474,547	318	917	329
SR 91	192	193	8	25700	3	0.284278	317	2.67	333	\$	32,500	\$ 721,023	\$10,100,000	\$	10,853,523	87	737	253
SR 91	193	194	36	25700	3	1.27925	6	12.00	91	Ś	130.000	\$ 5.047.163	\$20,200,000	Ś	25.377.163	11	108	21
SR 91	194	195	10	25700	3	0.355347	242	3.33	302	Ś	13.000	\$ 2,523,582	\$10.100.000	Ś	12.636.582	66	610	207
SR 91	195	196	9	25700	3	0.319812	279	3.00	320	Ś	13.000	\$ 2.163.070	\$10.100.000	Ś	12.276.070	71	670	232
SR 91	197	198	9	25700	3	0.319812	279	3.00	320	Ś	32.500	\$ 1.442.047	\$ -	Ś	1.474.547	318	917	329
SR 91	199	200	13	25700	3	0.461951	164	4.33	257	Ś	19.500	\$ 3.605.117	\$ -	Ś	3.624.617	205	626	209
SR 91	203	204	16	25700	3	0.568555	94	5.33	215	Ś	65.000	\$ 1.442.047	\$20.200.000	Ś	21.707.047	24	333	91
SR 91	204	205	19	25700	3	0.675159	64	6.33	188	Ś	52.000	\$ 3.965.628	\$ -	Ś	4.017.628	192	444	137
SR 91	205	206	18	25700	3	0.639625	71	6.00	195	Ś	78.000	\$ 2.163.070	\$ -	Ś	2.241.070	260	526	164
SR 91	207	208	11	25700	3	0.390882	208	3.67	286	Ś	52.000	\$ 1.081.535	\$ -	Ś	1.133.535	343	837	299
SR 91	208	209	8	25700	3	0.284278	317	2.67	333	Ś	32,500	\$ 721.023	\$10.100.000	Ś	10.853.523	87	737	253
SR 91	209	210	9	25700	3	0.319812	279	3.00	320	Ś	45.500	\$ 360.512	\$10,100,000	Ś	10.506.012	89	688	236
SR 91	214	215	8	25700	3	0.284278	317	2.67	333	Ś	19,500	\$ 1.802.558	\$ -	Ś	1.822.058	304	954	339
SR 91	215	216	10	25700	3	0.355347	242	3.33	302	Ś	39,000	\$ 1,081,535	\$10,100,000	Ś	11,220,535	82	626	209
SR 91	216	217	13	25700	3	0.461951	164	4.33	257	Ś	58,500	\$ 1.081.535	\$10,100,000	Ś	11.240.035	81	502	150
SR 91	219	220	10	25700	3	0 355347	242	3 33	302	Ś	32 500	\$ 1 802 558	\$ -	ې د	1 835 058	298	842	305
SR 91	221	220	15	25700	3	0.533021	115	5.00	224	Ś	39,000	\$ 3,244,605	\$ -	Ś	3,283,605	215	554	179
SR 91	222	223	10	25700	3	0 355347	242	3 33	302	Ś	19 500	\$ 2 523 582	÷ د -	÷ ج	2 543 082	254	798	285
SR 91	222	223	8	25700	3	0 284278	317	2.67	332	ې د	39 000	\$ 721 023	<u>۲</u> ۲	ې د	760 023	387	1032	357
SR 91	223	227	11	25700	2	0 390882	202	3.67	286	ہ د	32 500	\$ 2 163 070	÷ د -	ب د	2 195 570	276	770	270
SR 01	224	225	8	25700	2	0 284278	200	2.67	200	ہ د	26 000	\$ 1 442 047	\$	र २	1 468 047	270	972	2/3
SR 01	220	227	10	25700	2	0 2552/7	2/2	2.07	303	ہ د	20,000	\$ 1 202 552	÷	4	1 835 059	202	8/2	205
	227	220	10	25700	2	0.555547	71	6.00	105	ہ د	30,000	\$ 2,602,338	\$20,200,000	ب د	22 8// 117	17	2042	77
	220	223	10	25700	2	0.039023	202	3.67	286	ې د	10 500	\$ 3,003,117	\$20,200,000	ې د	23,044,117	1/ 22/	203 720	250
	230	231	 	25700	2	0.330002	200	2.07	200	ر ح	30 000	ç 700 4 ,095		ب د	760 022	201	1022	250
	201	202	0	25700	2 2	0.2042/8	200	2.07	222	ې ح	35,000	÷ 721,023	- ç c	ې د	2 540 592	302	746	260
2K 91	232	233	1 11	25700	3	0.390882	208	5.07	280	Ş	20,000	2,523,582 ډ ا	ې -	Ş	2,549,582	252	740	200

						Cr	ash Rate/Cr	ash Freque	ncy				Economic Cos	t			Ra	ink
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank		PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 91	234	235	8	25700	3	0.284278	317	2.67	333	\$	32,500	\$ 1,081,535	\$-	\$	1,114,035	354	1004	348
SR 91	235	236	8	25700	3	0.284278	317	2.67	333	\$	32,500	\$ 1,081,535	\$-	\$	1,114,035	354	1004	348
SR 91	236	237	34	25700	3	1.20818	14	11.33	102	\$	117,000	\$ 5,407,675	\$10,100,000	\$	15,624,675	49	165	38
SR 91	237	238	11	34000	3	0.295461	305	3.67	286	\$	26,000	\$ 2,523,582	\$-	\$	2,549,582	252	843	307
SR 91	239	240	14	34000	3	0.376041	222	4.67	239	\$	13,000	\$ 3,965,628	\$10,100,000	\$	14,078,628	54	515	157
SR 91	240	241	16	34000	3	0.429761	185	5.33	215	\$	65,000	\$ 2,163,070	\$-	\$	2,228,070	263	663	229
SR 91	241	242	11	34000	3	0.295461	305	3.67	286	\$	32,500	\$ 2,163,070	\$-	\$	2,195,570	276	867	312
SR 91	242	243	20	34000	3	0.537201	113	6.67	181	\$	84,500	\$ 2,523,582	\$-	\$	2,608,082	237	531	166
SR 91	243	244	20	32800	3	0.556855	103	6.67	181	\$	65,000	\$ 3,244,605	\$10,100,000	\$	13,409,605	56	340	95
SR 91	244	245	23	48900	3	0.429541	187	7.67	162	\$	65,000	\$ 4,686,652	\$-	\$	4,751,652	171	520	159
SR 91	245	246	21	48900	3	0.39219	207	7.00	172	\$	52,000	\$ 4,686,652	\$-	\$	4,738,652	173	552	178
SR 91	246	247	20	48900	3	0.373514	230	6.67	181	\$	58,500	\$ 3,965,628	\$-	\$	4,024,128	191	602	200
SR 91	247	248	18	48900	3	0.336163	265	6.00	195	\$	65,000	\$ 2,884,093	\$-	\$	2,949,093	221	681	234
SR 91	248	249	23	56200	3	0.373747	229	7.67	162	\$	65,000	\$ 4,686,652	\$ -	\$	4,751,652	171	562	182
SR 91	249	250	47	56200	3	0.763743	44	15.67	63	\$	136,500	\$ 9,012,792	\$10,100,000	\$	19,249,292	31	138	29
SR 91	250	251	30	63400	3	0.432133	182	10.00	120	\$	71,500	\$ 6,849,722	\$ -	\$	6,921,222	122	424	130
SR 91	251	252	20	63400	3	0.288089	313	6.67	181	\$	71,500	\$ 3,244,605	\$-	\$	3,316,105	211	705	241
SR 91	252	253	25	63400	3	0.360111	241	8.33	149	\$	97,500	\$ 3,605,117	\$ -	\$	3,702,617	198	588	193
SR 91	253	254	24	63400	3	0.345707	255	8.00	157	Ś		\$ 3.605.117	\$10.100.000	Ś	13.789.617	55	467	143
SR 91	254	255	33	63400	3	0.475347	153	11.00	106	Ś	123,500	\$ 4.686.652	\$10.100.000	Ś	14.910.152	52	311	85
SR 91	255	256	52	63400	3	0.749031	46	17.33	54	Ś	227.500	\$ 5.407.675	\$20.200.000	Ś	25.835.175	9	109	22
SR 91	256	257	29	72900	3	0.363292	238	9.67	129	Ś	91.000	\$ 5.047.163	\$10.100.000	\$	15.238.163	51	418	128
SR 91	257	258	29	68800	3	0.384942	219	9.67	129	Ś	97.500	\$ 5.047.163	\$ -	Ś	5.144.663	161	509	152
SR 91	258	259	31	68800	3	0.41149	198	10.33	118	Ś	104.000	\$ 5.047.163	, \$10.100.000	Ś	15.251.163	50	366	107
SR 91	259	260	47	68800	3	0.623872	78	15.67	63	Ś	130.000	\$ 9.733.815	\$ -	\$	9.863.815	97	238	64
SR 91	260	261	25	68800	3	0.331847	271	8.33	149	Ś	91.000	\$ 3.965.628	\$-	\$	4.056.628	187	607	206
SR 91	261	262	23	68800	3	0.305299	299	7.67	162	Ś	71.500	\$ 4.326.140	\$-	Ś	4.397.640	182	643	219
SR 91	262	263	20	68800	3	0.265477	345	6.67	181	\$	78.000	\$ 2.884.093	\$ -	\$	2.962.093	219	745	259
SR 91	263	264	24	68800	3	0.318573	285	8.00	157	Ś	91.000	\$ 3.605.117	\$ -	\$	3.696.117	200	642	217
SR 91	264	265	17	97500	3	0.159232	412	5.67	207	Ś	65,000	\$ 2,523,582	\$ -	Ś	2,588,582	240	859	310
SR 91	265	266	16	97500	3	0.149865	418	5.33	215	Ś	71.500	\$ 1.802.558	<u>,</u> \$	\$	1.874.058	286	919	333
SR 91	266	267	40	97500	3	0 374663	228	13 33	81	Ś	162 500	\$ 5 407 675	\$	\$	5 570 175	146	455	140
SR 91	267	268	24	59100	3	0.37086	232	8.00	157	Ś	117,000	\$ 2,163,070	\$ -	Ś	2,280,070	258	647	223
SR 91	268	269	20	68100	3	0.268206	344	6.67	181	Ś	91 000	\$ 1 802 558	\$10 100 000	¢ ¢	11 993 558	72	597	196
SR 91	269	205	14	68100	3	0 187744	389	4 67	239	ې د	58 500	\$ 1,802,558	\$ -	ې د	1 861 058	288	916	327
SR 91	205	270	1/	68100	2	0 187744	389	4.67	235	ب د	58 500	\$ 1 802 558	۲ ۲	ہ د	1 861 058	288	916	327
SR 01	270	271	28	68100	2	0.107744	205	9.07	122	ر د	149 500	\$ 1 202,550		ہ د	1 952 058	200	6/1	216
SR 01	271	272	20	41200	2	0.707072	25	12 00	Q1	ر د	143 000	\$ 5 047 162	- ۲ د	ہ د	5 190 162	15/	280	75
	272	273	25	41200	2	0.55/152	104	\$ 22	1/0	ر ح	1/12 000	\$ 1,047,103	- ب خ	ہ د	1 224 525	22 <i>1</i>	597	102
	273	274	12	41200	2	0.334132	212	0.33 A 22	249	ې د	10 500	\$ 2,001,005	י - ל -	ې د	2 624 617	205	77/	275
	274	275	1/	41200	2	0.200109	201	4.55	237	ې د	23 500	\$ 3,003,117	\$10,100,000	ې د	13 016 502	20J	502	105
	275	270	10	41200	2 2	0.310323	291	4.07	202	د د	32,300	\$ 2,004,093	\$10,100,000	ې د		75	744	252
2K AT	270	277	10	41200	3	0.221001	507	5.55	302	Ş	20,000	¥ 1,802,558 ڊ ا	\$10,100,000	Ş	11,928,558	/5	/44	257

						Cr	ash Rate/Cr	ash Freque	ncy			Economic Cos	t			Ra	ink
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank	PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 91	277	278	16	41200	3	0.354657	249	5.33	215	\$ 52,000	\$ 2,884,093	\$-	\$	2,936,093	225	689	237
SR 91	279	280	15	41200	3	0.332491	270	5.00	224	\$ 45,500	\$ 2,884,093	\$-	\$	2,929,593	227	721	249
SR 91	280	281	14	41200	3	0.310325	291	4.67	239	\$ 58,500	\$ 1,802,558	\$-	\$	1,861,058	288	818	292
SR 91	281	282	11	41200	3	0.243827	355	3.67	286	\$ 52,000	\$ 1,081,535	\$-	\$	1,133,535	343	984	346
SR 91	282	283	15	32200	3	0.425423	191	5.00	224	\$ 52,000	\$ 2,523,582	\$-	\$	2,575,582	243	658	228
SR 91	283	284	26	32200	3	0.7374	53	8.67	141	\$ 84,500	\$ 4,686,652	\$-	\$	4,771,152	169	363	105
SR 91	284	285	39	32200	3	1.106101	18	13.00	85	\$ 156,000	\$ 5,407,675	\$-	\$	5,563,675	147	250	67
SR 91	285	286	24	32200	3	0.680677	63	8.00	157	\$ 78,000	\$ 4,326,140	\$-	\$	4,404,140	181	401	119
SR 91	286	287	17	32200	3	0.482146	150	5.67	207	\$ 65,000	\$ 2,523,582	\$-	\$	2,588,582	240	597	196
SR 91	288	289	45	32200	3	1.27627	8	15.00	70	\$ 188,500	\$ 5,768,187	\$-	\$	5,956,687	133	211	54
SR 91	289	290	21	37000	3	0.518327	127	7.00	172	\$ 78,000	\$ 3,244,605	\$-	\$	3,322,605	210	509	152
SR 91	290	291	10	37000	3	0.246822	354	3.33	302	\$ 52,000	\$ 721,023	\$-	\$	773,023	381	1037	362
SR 91	291	292	14	37000	3	0.345551	256	4.67	239	\$ 65,000	\$ 1,442,047	\$-	\$	1,507,047	312	807	290
SR 91	292	293	15	36500	3	0.375305	226	5.00	224	\$ 58,500	\$ 2,163,070	\$-	\$	2,221,570	265	715	245
SR 91	293	294	11	36500	3	0.275224	336	3.67	286	\$ 19,500	\$ 2,884,093	\$-	\$	2,903,593	234	856	308
SR 91	294	295	12	36500	3	0.300244	303	4.00	274	\$ 45,500	\$ 1,802,558	\$-	\$	1,848,058	294	871	313
SR 91	295	296	9	36500	3	0.225183	361	3.00	320	\$ 39,000	\$ 1,081,535	\$-	\$	1,120,535	351	1032	357
SR 91	296	297	21	36500	3	0.525427	124	7.00	172	\$ 84,500	\$ 2,884,093	\$-	\$	2,968,593	218	514	156
SR 91	297	298	18	36500	3	0.450366	176	6.00	195	\$ 78,000	\$ 2,163,070	\$-	\$	2,241,070	260	631	213
SR 91	298	299	13	36500	3	0.325264	275	4.33	257	\$ 52,000	\$ 1,802,558	\$-	\$	1,854,558	292	824	296
SR 91	299	300	13	36500	3	0.325264	275	4.33	257	\$ 52,000	\$ 1,802,558	\$-	\$	1,854,558	292	824	296
SR 91	300	301	14	36500	3	0.350285	251	4.67	239	\$ 45,500	\$ 2,163,070	\$10,100,000	\$	12,308,570	70	560	181
SR 91	301	302	18	36500	3	0.450366	176	6.00	195	\$ 52,000	\$ 3,605,117	\$-	\$	3,657,117	202	573	186
SR 91	304	305	19	34100	3	0.508845	132	6.33	188	\$ 71,500	\$ 2,884,093	\$-	\$	2,955,593	220	540	170
SR 91	305	306	11	34100	3	0.294594	307	3.67	286	\$ 39,000	\$ 1,802,558	\$-	\$	1,841,558	296	889	317
SR 91	306	307	13	34100	3	0.348157	253	4.33	257	\$ 58,500	\$ 1,442,047	\$-	\$	1,500,547	313	823	294
SR 91	307	308	14	34100	3	0.374938	227	4.67	239	\$ 71,500	\$ 1,081,535	\$-	\$	1,153,035	338	804	289
SR 417	1	2	10	14200	3	0.643128	69	3.33	302	\$ 45,500	\$ 1,081,535	\$-	\$	1,127,035	346	717	246
SR 417	38	39	29	52300	3	0.506387	134	9.67	129	\$ 84,500	\$ 5,768,187	\$-	\$	5,852,687	141	404	120
SR 417	41	42	22	40900	3	0.49123	145	7.33	168	\$ 84,500	\$ 3,244,605	\$-	\$	3,329,105	209	522	160
SR 417	42	43	9	40900	3	0.200958	382	3.00	320	\$ 32,500	\$ 1,081,535	\$10,100,000	\$	11,214,035	83	785	281
SR 417	43	44	12	39000	3	0.280998	331	4.00	274	\$ 32,500	\$ 2,523,582	\$-	\$	2,556,082	251	856	308
SR 417	44	45	14	39000	3	0.32783	272	4.67	239	\$ 45,500	\$ 2,523,582	\$-	\$	2,569,082	245	756	265
SR 417	45	46	9	39000	3	0.210748	376	3.00	320	\$ 19,500	\$ 2,163,070	\$-	\$	2,182,570	281	977	345
SR 417	47	48	10	39000	3	0.234165	358	3.33	302	\$ 32,500	\$ 1,802,558	\$-	\$	1,835,058	298	958	341
SR 417	48	49	12	32100	3	0.341399	257	4.00	274	\$ 39,000	\$ 2,163,070	\$-	\$	2,202,070	272	803	287
SR 417	50	51	10	32100	3	0.284499	316	3.33	302	\$ 45,500	\$ 1,081,535	\$-	\$	1,127,035	346	964	342
SR 417	52	53	8	30500	3	0.239539	357	2.67	333	\$ 32,500	\$ 1,081,535	\$-	\$	1,114,035	354	1044	364
SR 429	5	6	8	9800	3	0.745504	50	2.67	333	\$ 32,500	\$ 1,081,535	\$-	\$	1,114,035	354	737	253
SR 429	7	8	11	12500	3	0.803653	34	3.67	286	\$ 39,000	\$ 1,442,047	\$10,100,000	\$	11,581,047	77	397	117
SR 528	0	1	77	80000	3	0.878995	27	25.67	25	\$ 279,500	\$12,257,397	\$ -	\$	12,536,897	68	120	24
SR 528	1	2	48	77900	3	0.562717	101	16.00	61	\$ 188,500	\$ 6,489,210	\$10,100,000	\$	16,777,710	39	201	51

						Cr	ash Rate/Cr	ash Freque	าсу				Economic Cos	t			Ra	ink
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank		PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 528	2	3	26	80700	3	0.294229	310	8.67	141	\$	97,500	\$ 3,965,628	\$-	\$	4,063,128	186	637	215
SR 528	3	4	33	69900	3	0.431144	183	11.00	106	\$	143,000	\$ 3,965,628	\$-	\$	4,108,628	185	474	144
SR 528	4	5	28	69900	3	0.365819	233	9.33	133	\$	104,000	\$ 4,326,140	\$-	\$	4,430,140	176	542	171
SR 528	5	6	12	69900	3	0.15678	413	4.00	274	\$	52,000	\$ 1,442,047	\$-	\$	1,494,047	315	1002	347
SR 528	6	7	21	86200	3	0.222484	366	7.00	172	\$	91,000	\$ 2,523,582	\$-	\$	2,614,582	236	774	275
SR 528	7	8	14	86200	3	0.148322	419	4.67	239	\$	45,500	\$ 2,523,582	\$-	\$	2,569,082	245	903	321
SR 528	8	9	9	86200	3	0.09535	440	3.00	320	\$	26,000	\$ 1,442,047	\$10,100,000	\$	11,568,047	79	839	300
SR 568	2	3.2	10	10200	3	0.746113	48	3.33	302	\$	32,500	\$ 1,802,558	\$-	\$	1,835,058	298	648	224
SR 570	0	1	10	21500	3	0.424764	192	3.33	302	\$	45,500	\$ 1,081,535	\$-	\$	1,127,035	346	840	301
SR 570	2	3	8	24200	3	0.301898	301	2.67	333	\$	39,000	\$ 721,023	\$-	\$	760,023	382	1016	353
SR 570	6	7	8	25700	3	0.284278	317	2.67	333	\$	32,500	\$ 1,081,535	\$-	\$	1,114,035	354	1004	348
SR 570	8	9	12	27500	3	0.398506	204	4.00	274	\$	52,000	\$ 1,442,047	\$-	\$	1,494,047	315	793	283
SR 589	2	3	26	60400	3	0.393117	206	8.67	141	\$	91,000	\$ 4,326,140	\$-	\$	4,417,140	177	524	163
SR 589	3	4	33	63500	3	0.474598	154	11.00	106	\$	110,500	\$ 5,768,187	\$ -	\$	5,878,687	138	398	118
SR 589	4	5	38	66200	3	0.524217	125	12.67	87	\$	143,000	\$ 5,768,187	\$ -	\$	5,911,187	135	347	97
SR 589	5	6	27	59400	3	0.41511	197	9.00	138	\$	97,500	\$ 3,605,117	\$20,200,000	\$	23,902,617	16	351	99
SR 589	6	7	104	54500	3	1.7427	3	34.67	14	\$	357,500	\$17,304,560	\$10,100,000	\$	27,762,060	7	24	4
SR 589	7	8	32	50500	3	0.578688	91	10.67	114	\$	123,500	\$ 4,686,652	\$ -	\$	4,810,152	166	371	109
SR 589	8	9	21	50500	3	0.379764	221	7.00	172	\$	65,000	\$ 3,965,628	\$ -	\$	4,030,628	189	582	188
SR 589	9	10	25	50500	3	0.4521	175	8.33	149	\$	97,500	\$ 3,605,117	\$ -	\$	3,702,617	198	522	160
SR 589	10	11	44	50500	3	0.795696	36	14.67	71	\$	156,000	\$ 6,849,722	\$10,100,000	\$	17,105,722	38	145	30
SR 589	11	12	34	45400	3	0.683926	62	11.33	102	\$	123,500	\$ 5,407,675	\$ -	\$	5,531,175	149	313	86
SR 589	12	13	25	35200	3	0.648609	67	8.33	149	\$	84,500	\$ 4,326,140	\$ -	\$	4,410,640	180	396	115
SR 589	13	14	13	35200	3	0.337277	261	4.33	257	\$	32,500	\$ 2,884,093	\$ -	\$	2,916,593	230	748	263
SR 589	18	19	23	23600	3	0.890024	25	7.67	162	\$	97,500	\$ 2,884,093	\$ -	\$	2,981,593	217	404	120
SR 589	19	20	8	23600	3	0.309574	293	2.67	333	\$	39,000	\$ 721,023	\$ -	\$	760,023	382	1008	351
SR 589	23	24	9	23600	3	0.34827	252	3.00	320	\$	26,000	\$ 1,802,558	\$ -	\$	1,828,558	303	875	315
SR 589	25	26	14	23600	3	0.541754	109	4.67	239	Ś	58,500	\$ 1.802.558	\$-	Ś	1.861.058	288	636	214
SR 589	26	27	33	23600	3	1.276991	7	11.00	106	\$	123,500	\$ 5,047,163	\$-	\$	5,170,663	157	270	71
SR 589	27	28	16	23600	3	0.619147	79	5.33	215	\$	58,500	\$ 2,523,582	\$-	\$	2,582,082	242	536	168
SR 589	28	29	23	17000	3	1.235563	9	7.67	162	Ś	78.000	\$ 3.965.628	\$-	Ś	4.043.628	188	359	103
SR 589	29	30	10	17000	3	0.537201	113	3.33	302	Ś	26.000	\$ 2.163.070	\$-	Ś	2.189.070	278	693	239
SR 589	31	32	8	17000	3	0.429761	185	2.67	333	\$	26,000	\$ 1,442,047	\$-	\$	1,468,047	322	840	301
SR 589	36	37	11	17000	3	0.590921	88	3.67	286	Ś	39.000	\$ 1.442.047	\$10.100.000	Ś	11.581.047	77	451	138
SR 589	40	41	8	9800	3	0.745504	50	2.67	333	Ś	26.000	\$ 1.442.047	\$ -	Ś	1.468.047	322	705	241
SR 821	1	2	18	35000	3	0.469667	160	6.00	195	Ś	45.500	\$ 3,965,628	\$	Ś	4.011.128	193	548	174
SR 821	2	3	35	35000	3	0.913242	23	11.67	97	Ś	136.500	\$ 5,047.163	<u>\$</u> -	\$	5.183.663	155	275	74
SR 821	3	4	34	54100	3	0.573941	93	11.33	102	Ś	156.000	\$ 3,605,117	\$	Ś	3,761.117	196	391	113
SR 821	4	5	20	54100	3	0.337613	260	6.67	181	Ś	78.000	\$ 2,523,582	\$10.100.000	Ś	12.701.582	65	506	151
SR 821	5	6	50	62200	3	0.734117	55	16.67	55	Ś	169,000	\$ 8,652,280	\$ -	Ś	8.821.280	105	215	56
SR 821	6	7	73	73400	3	0.908265	24	24.33	28	Ś	273.000	\$10.815.350	\$10.100.000	Ś	21.188.350	26	78	17
SR 821	7	, 8	37	77600	3	0.435438	181	12.33	88	Ś	136,500	\$ 5,768 187	\$ -	Ś	5,904 687	136	405	122
	· ·		<u>_</u> ,		L Ž	000 100	L			Ŷ		+ 5,, 55,10,	Ŧ	Ý	2,201,007	100		

						Cra	ash Rate/Cr	ash Freque	ncy			Economic Cos	t			Ra	nk
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank	PDO	Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 821	8	9	40	77600	3	0.470743	159	13.33	81	\$ 149,500	\$ 6,128,698	\$-	\$	6,278,198	129	369	108
SR 821	9	10	65	77600	3	0.764958	43	21.67	34	\$ 266,500	\$ 8,652,280	\$-	\$	8,918,780	104	181	44
SR 821	10	11	27	77600	3	0.317752	287	9.00	138	\$ 71,500	\$ 5,047,163	\$20,200,000	\$	25,318,663	12	437	135
SR 821	11	12	77	116400	3	0.604121	83	25.67	25	\$ 260,000	\$12,978,420	\$10,100,000	\$	23,338,420	20	128	27
SR 821	12	13	103	116400	3	0.808109	33	34.33	15	\$ 377,000	\$16,223,025	\$-	\$	16,600,025	42	90	20
SR 821	13	14	78	116400	3	0.611966	80	26.00	23	\$ 305,500	\$10,815,350	\$10,100,000	\$	21,220,850	25	128	27
SR 821	14	15	198	140800	3	1.284247	5	66.00	2	\$ 741,000	\$29,922,468	\$10,100,000	\$	40,763,468	2	9	1
SR 821	15	16	73	140800	3	0.473485	156	24.33	28	\$ 253,500	\$12,257,397	\$-	\$	12,510,897	69	253	69
SR 821	16	17	151	168600	3	0.81791	31	50.33	3	\$ 494,000	\$27,038,375	\$-	\$	27,532,375	8	42	8
SR 821	17	18	114	90400	3	1.151655	15	38.00	12	\$ 377,000	\$20,188,653	\$-	\$	20,565,653	27	54	11
SR 821	18	19	128	90400	3	1.293086	4	42.67	7	\$ 435,500	\$21,991,212	\$-	\$	22,426,712	22	33	6
SR 821	19	20	62	90400	3	0.626339	77	20.67	39	\$ 221,000	\$10,094,327	\$-	\$	10,315,327	93	209	53
SR 821	20	21	134	100400	3	1.218869	13	44.67	6	\$ 442,000	\$23,793,770	\$-	\$	24,235,770	15	34	7
SR 821	21	22	78	124000	3	0.574459	92	26.00	23	\$ 273,000	\$12,978,420	\$-	\$	13,251,420	58	173	40
SR 821	22	23	53	124000	3	0.390337	214	17.67	51	\$ 195,000	\$ 7,931,257	\$10,100,000	\$	18,226,257	34	299	82
SR 821	23	24	120	138300	3	0.792401	37	40.00	10	\$ 442,000	\$18,386,095	\$10,100,000	\$	28,928,095	6	53	10
SR 821	24	25	117	138300	3	0.772591	42	39.00	11	\$ 357,500	\$21,630,700	\$20,200,000	\$	42,188,200	1	54	11
SR 821	25	26	92	153400	3	0.547707	107	30.67	19	\$ 364,000	\$12,617,908	\$10,100,000	\$	23,081,908	21	147	32
SR 821	26	27	127	101200	3	1.146065	16	42.33	8	\$ 494,000	\$18,386,095	\$-	\$	18,880,095	32	56	13
SR 821	27	28	100	106300	3	0.859118	28	33.33	16	\$ 357,500	\$16,223,025	\$-	\$	16,580,525	43	87	19
SR 821	28	29	54	106300	3	0.463924	161	18.00	50	\$ 227,500	\$ 6,849,722	\$-	\$	7,077,222	116	327	89
SR 821	29	30	91	106300	3	0.781797	41	30.33	20	\$ 344,500	\$13,338,932	\$10,100,000	\$	23,783,432	18	79	18
SR 821	30	31	68	106300	3	0.5842	90	22.67	32	\$ 266,500	\$ 9,733,815	\$-	\$	10,000,315	95	217	57
SR 821	31	32	58	98100	3	0.539939	110	19.33	44	\$ 247,000	\$ 6,849,722	\$10,100,000	\$	17,196,722	37	191	47
SR 821	32	33	30	98100	3	0.279279	335	10.00	120	\$ 130,000	\$ 3,605,117	\$-	\$	3,735,117	197	652	227
SR 821	33	34	65	98100	3	0.605104	82	21.67	34	\$ 227,500	\$10,094,327	\$20,200,000	\$	30,521,827	4	120	24
SR 821	34	35	61	91800	3	0.606838	81	20.33	42	\$ 234,000	\$ 9,012,792	\$-	\$	9,246,792	101	224	59
SR 821	35	36	100	91800	3	0.994817	20	33.33	16	\$ 435,500	\$11,536,373	\$10,100,000	\$	22,071,873	23	59	14
SR 821	36	37	46	85600	3	0.490761	146	15.33	66	\$ 188,500	\$ 6,128,698	\$-	\$	6,317,198	127	339	93
SR 821	37	38	21	85600	3	0.224043	365	7.00	172	\$ 78,000	\$ 2,884,093	\$10,100,000	\$	13,062,093	61	598	198
SR 821	38	39	43	85600	3	0.458755	173	14.33	77	\$ 182,000	\$ 5,407,675	\$-	\$	5,589,675	145	395	114
SR 821	39	40	71	85600	3	0.757479	45	23.67	30	\$ 312,000	\$ 8,291,768	\$-	\$	8,603,768	106	181	44
SR 821	40	41	48	47500	3	0.922855	22	16.00	61	\$ 195,000	\$ 6,489,210	\$-	\$	6,684,210	123	206	52
SR 821	41	42	28	47500	3	0.538332	111	9.33	133	\$ 143,000	\$ 2,163,070	\$-	\$	2,306,070	256	500	149
SR 821	42	43	26	47500	3	0.49988	139	8.67	141	\$ 110,500	\$ 2,884,093	\$10,100,000	\$	13,094,593	59	339	93
SR 821	43	44	56	65100	3	0.785585	39	18.67	47	\$ 253,500	\$ 6,128,698	\$-	\$	6,382,198	126	212	55
SR 821	44	45	36	39500	3	0.832322	30	12.00	91	\$ 104,000	\$ 7,210,233	\$-	\$	7,314,233	114	235	62
SR 821	45	46	49	39500	3	1.132882	17	16.33	58	\$ 169,000	\$ 7,931,257	\$10,100,000	\$	18,200,257	36	111	23
SR 821	46	47	81	39500	3	1.872724	2	27.00	22	\$ 357,500	\$ 8,652,280	\$20,200,000	\$	29,209,780	5	29	5
SR 821	47	48	43	61100	3	0.642707	70	14.33	77	\$ 169,000	\$ 5,768,187	\$10,100,000	\$	16,037,187	47	194	49
SR 869	0	1	55	88900	3	0.564998	100	18.33	48	\$ 208,000	\$ 8,291,768	\$-	\$	8,499,768	108	256	70
SR 869	1	2	26	75500	3	0.314494	289	8.67	141	\$ 71,500	\$ 5,407,675	\$ -	\$	5,479,175	153	583	190

						Cr	ash Rate/Cr	ash Frequei	ncy				Economic Cos	st			Ra	nk
State Road	From MP	To MP	Total # of Crashes	AADT	No of Yrs Analyzed	Crash Rate	Crash Rate Rank	Crash Freq (per year)	Crash Freq Rank	PDO		Injury	Fatal		Total Cost	Rank	Sum of Ranks	Final Rank
SR 869	2	3	32	69600	3	0.419881	195	10.67	114	\$ 123,5	00	\$ 4,686,652	\$-	\$	4,810,152	166	475	145
SR 869	3	4	26	74600	3	0.318288	286	8.67	141	\$ 91,0	00	\$ 4,326,140	\$-	\$	4,417,140	177	604	202
SR 869	4	5	22	74600	3	0.269321	341	7.33	168	\$ 65,0	00	\$ 4,326,140	\$-	\$	4,391,140	183	692	238
SR 869	5	6	46	66600	3	0.630768	76	15.33	66	\$ 156,0	00	\$ 7,931,257	\$-	\$	8,087,257	109	251	68
SR 869	6	7	19	66600	3	0.260535	347	6.33	188	\$ 91,0	00	\$ 1,802,558	\$-	\$	1,893,558	284	819	293
SR 869	7	8	30	57300	3	0.478137	152	10.00	120	\$ 91,0	00	\$ 5,768,187	\$-	\$	5,859,187	140	412	125
SR 869	8	9	22	57300	3	0.350634	250	7.33	168	\$ 78,0	00	\$ 3,605,117	\$-	\$	3,683,117	201	619	208
SR 869	9	10	13	57300	3	0.207193	379	4.33	257	\$ 45,5	00	\$ 2,163,070	\$-	\$	2,208,570	269	905	322
SR 869	10	11	15	47800	3	0.286582	314	5.00	224	\$ 45,5	00	\$ 2,884,093	\$-	\$	2,929,593	227	765	269
SR 869	11	12	15	47800	3	0.286582	314	5.00	224	\$ 32,5	00	\$ 3,605,117	\$-	\$	3,637,617	204	742	256
SR 869	12	13	8	57600	3	0.126839	432	2.67	333	\$ 13,0	00	\$ 2,163,070	\$-	\$	2,176,070	282	1047	368
SR 869	13	14	17	57600	3	0.269533	340	5.67	207	\$ 58,5	00	\$ 2,884,093	\$-	\$	2,942,593	223	770	270
SR 869	14	15	19	57600	3	0.301243	302	6.33	188	\$ 84,5	00	\$ 2,163,070	\$-	\$	2,247,570	259	749	264
SR 869	15	16	26	71200	3	0.333487	269	8.67	141	\$ 58,5	00	\$ 6,128,698	\$-	\$	6,187,198	132	542	171
SR 869	16	17	37	71200	3	0.474578	155	12.33	88	\$ 117,0	00	\$ 6,849,722	\$-	\$	6,966,722	119	362	104
SR 869	17	18	18	67900	3	0.242097	356	6.00	195	\$ 65,0	00	\$ 2,884,093	\$-	\$	2,949,093	221	772	272
SR 869	18	19	33	67900	3	0.443844	178	11.00	106	\$ 136,5	00	\$ 4,326,140	\$ -	\$	4,462,640	174	458	141
SR 869	19	20	29	67900	3	0.390044	215	9.67	129	\$ 110,5	00	\$ 4,326,140	\$ -	\$	4,436,640	175	519	158
SR 869	20	21	35	69000	3	0.463239	162	11.67	97	\$ 123,5	00	\$ 5,768,187	\$ -	\$	5,891,687	137	396	115
SR 869	21	22	44	32900	3	1.221357	11	14.67	71	\$ 162,5	00	\$ 6,849,722	\$ -	\$	7,012,222	117	199	50

Appendix E

Hydroplaning Formula Calculation Results for Each Site

#	Design Speed (mph)	Intensity (in/hr)	xslope (ft/ft)	Longitudinal slope (ft/ft)	Width (ft)	MTD (mm)	Slope along path	L (ft) along path	MTD (in)	Gallaway H20 t (in)	A1	A2	Greater A	Max Speed (mph)	Predicted Driver Speed (mph)	Speed Diff (mph)	Hydroplaning
								Turnp	ike Site	5							
1	65	2	0.067	0.005	48	1.5	0.067	48.1	0.0591	0.01802	16.753	19.532	19.532	73.69	53	20.69	No
2	65	2	0.02	0	60	1.5	0.020	60.0	0.0591	0.07526	15.664	17.494	17.494	50.89	53	-2.11	Yes
3	70	2	0.028	0	72	1.5	0.028	72.0	0.0591	0.07157	15.700	17.563	17.563	51.55	58	-6.45	Yes
4	70	2	0.03	0.002	60	1.5	0.030	60.1	0.0591	0.05687	15.870	17.880	17.880	54.72	58	-3.28	Yes
5	70	2	0.03	0.0002	60	1.5	0.030	60.0	0.0591	0.05683	15.870	17.881	17.881	54.73	58	-3.27	Yes
6	70	2	0.045	0.02	72	1.5	0.049	78.8	0.0591	0.05240	15.931	17.994	17.994	55.89	58	-2.11	Yes
								Other	Corrido	rs							
I-95 1	60	2	0.03	0.027	62	1.5	0.040	83.4	0.0591	0.06436	15.778	17.708	17.708	52.99	48	4.99	No
I-95 2	70	2	0.047	0.001	76	1.5	0.047	76.0	0.0591	0.05221	15.933	17.999	17.999	55.94	58	-2.06	Yes
I-95 3	70	2	0.037	0.0018	62	1.5	0.037	62.1	0.0591	0.05017	15.963	18.054	18.054	56.52	58	-1.48	Yes
I-95 4	70	2	0.054	0.03	76	1.5	0.062	86.9	0.0591	0.04895	15.982	18.089	18.089	56.89	58	-1.11	Yes
I-275 5	65	2	0.062	0.002	60	1.5	0.062	60.0	0.0591	0.02993	16.355	18.788	18.788	64.62	53	11.62	No
I-275 6	65	2	0.062	0.002	60	1.5	0.062	60.0	0.0591	0.02993	16.355	18.788	18.788	64.62	53	11.62	No

Appendix F

Excerpts from FDOT Plans Preparation Manual Crash Cost

FACILITY		DIVIDED			UNDIVIDED	
TYPE	URBAN	SUBURBAN	RURAL	URBAN	SUBURBAN	RURAL
2-3 Lanes	\$109,686	\$187,990	\$342,662	\$125,974	\$245,281	\$526,887
4-5 Lanes	\$119,072	\$216,234	\$464,901	\$107,908	\$161,173	\$115,320
6+ Lanes	\$117,867	\$153,957	\$313,317	\$62,606	n/a	n/a
Interstate	\$153,963	n/a	\$341,754	n/a	n/a	n/a
Turnpike	\$147,939	n/a	\$254,951	n/a	n/a	n/a

Table 23.6.1 FDOT Average Crash Costs by Facility Type

Average Cost/Crash: **\$155,695**

The above values were derived from 2010 through 2014 traffic crash and injury severity data for crashes on state roads in Florida using the formulation described in *FHWA Technical Advisory "Motor Vehicle Accident Costs", T 7570.2, dated October 31, 1994* and from a memorandum from USDOT, *Revised Departmental Guidance: Treatment of the Value of Preventing Fatalities and Injuries in Preparing Economic Analyses, dated February 5, 2008* updating the value of life saved to \$5.8 million, updated from \$5.8 million to \$6 million on March 18, 2009, to \$6.2 million on July 29, 2011, and to \$9.1 million on February 28, 2013.

http://www.dot.gov/sites/dot.dev/files/docs/VSL%20Guidance%202013.pdf

When utilizing predictive methods or crash severity distributions for analysis, the following crash severity level costs should be used:

Crash Severity	Comprehensive Crash Cost
Fatal (K)	\$10,230,000
Severe Injury (A)	\$580,320
Moderate Injury (B)	\$157,170
Minor Injury (C)	\$97,650
Property Damage Only (O)	\$7,600

Table 23.6.2 FI	DOT KABCO	Crash Costs	3
-----------------	-----------	--------------------	---

Source: Florida Department of Transportation Crash Analysis Reporting (C.A.R.) System, analysis years 2010 through 2014.

Appendix G

Typical Sections for Other Corridor Sites

12'

AUX.

12'

12

10

PAVED SHLDR

<u>CURVE DATA</u> D=1° 15' 00" R=4,583.66 T=1,040.45' L=2,046.23 e=4.7% DESIGN SPEED=70 MPH

SITE 3-I-95 S OF GLADES RD

CURVE DATA D=1° 00' 00" R=5,729.578' T=1,721.605' L=3,344.86 e=3.7% DESIGN SPEED=70 MPH

SITE 4-I-95 S OF FOREST HILL BLVD

SITE 5- I-275 AT 13TH AVE N

CURVE DATA D=2° 00' 00" R=2,864.79' T=123.99' L=247.82' e=6.2% DESIGN SPEED=65 MPH

<u>SITE 6- I-275 N OF 13TH AVE N</u>

Appendix H

Crash Data for 6 Sites – Other Corridors

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
822536070.0	2011.0000	7/17/2011	2018.0	7.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
822566310.0	2011.0	9/29/2011	650.0	4.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
828219240.0	2011.0	10/8/2011	910.0	6.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
828229910.0	2011.0	12/13/2011	15.0	2.0	4.0	86.0	86070000.0	0.5	1476.0	0.0	MI	S
820001610.0	2011.0	4/5/2011	2339.0	2.0	4.0	86.0	86070000.0	0.6	1524.0	0.1	MI	N
828137570.0	2011.0	10/19/2011	1805.0	3.0	4.0	86.0	86070000.0	0.9	1477.0	0.1	MI	S
820934730.0	2011.0	3/29/2011	19.0	2.0	4.0	86.0	86070000.0	1.0	1523.0	0.0	MI	S
822459760.0	2011.0	8/24/2011	859.0	3.0	4.0	86.0	86070000.0	1.0	1523.0	0.0	MI	S
820004100.0	2011.0	1/21/2011	1547.0	5.0	4.0	86.0	86070000.0	1.1	1523.0	0.0	MI	N
820308950.0	2011.0	1/26/2011	948.0	3.0	4.0	86.0	86070000.0	1.3	1522.0	0.0	MI	N
820648560.0	2011.0	3/28/2011	2055.0	1.0	4.0	86.0	86070000.0	1.3	1522.0	0.0	MI	N
820943920.0	2011.0	5/6/2011	412.0	5.0	4.0	86.0	86070000.0	1.4	1478.0	0.0	MI	N
822743590.0	2011.0	8/1/2011	1637.0	1.0	4.0	86.0	86070000.0	1.4	1478.0	0.1	MI	N
828538430.0	2011.0	12/10/2011	246.0	6.0	4.0	86.0	86070000.0	1.6	1875.0	0.0	MI	N
820874760.0	2011.0	4/24/2011	133.0	7.0	4.0	86.0	86070000.0	1.7	1875.0	0.1	MI	N
828445880.0	2011.0	11/20/2011	825.0	7.0	4.0	86.0	86070000.0	3.6	1484.0	0.0	MI	S
845210890.0	2014.0	12/5/2014	937.0	5.0	4.0	86.0	86070000.0	0.2	8008.0	0.2	MI	N
844848050.0	2014.0	10/4/2014	1650.0	6.0	4.0	86.0	86070000.0	1.0	1523.0	0.0	MI	S
838144280.0	2014.0	9/20/2014	434.0	6.0	4.0	86.0	86070000.0	1.6	1875.0	0.0		
844827060.0	2014.0	9/20/2014	449.0	6.0	4.0	86.0	86070000.0	1.6	1875.0	0.1	MI	N
838144260.0	2014.0	9/18/2014	2249.0	4.0	4.0	86.0	86070000.0	1.7	1875.0	0.1	MI	Ν
837573290.0	2014.0	3/25/2014	340.0	2.0	4.0	86.0	86070000.0	1.4	1478.0	0.0	MI	N
Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1 Fi	inal_Meas	Crash_Loca
------------	------------	------------	------------	-----------	------------	------------	------------	------------	-----------	---------------	-----------	------------
822735290	2011	40791	1647	1	4	86	86070000	12	1890	0 M	11	Ν
820308790	2011	40669	940	5	4	86	86070000	12	1890	0 M	11	Ν
820710770	2011	40733	856	6	4	86	86070000	12	1890	0 M	11	Ν
822733690	2011	40764	2018	2	4	86	86070000	12	1890	0 M	11	Ν
819969410	2011	40586	1135	6	4	86	86070000	12	1525	0 M	11	S
831818220	2012	41175	439	7	4	86	86070000	12	1890	0 M	11	Ν
831855040	2012	41242	709	4	4	86	86070000	12	1890	0 M	11	Ν
828890450	2012	41047	1950	5	4	86	86070000	12	1890	0 M	11	Ν
831548490	2012	41157	1918	3	4	86	86070000	12	1890	0 M	11	Ν
828757440	2012	41083	2013	6	4	86	86070000	12	1525	0 M	11	S
831458840	2012	41080	41	3	4	86	86070000	12	1525	0 M	11	S
833279630	2013	41483	315	7	4	86	86070000	12	1890	0 M	11	Ν
837177820	2013	41599	9	4	4	86	86070000	12	1890	0 M	11	Ν
837177840	2013	41599	140	4	4	86	86070000	12	1890	0 M	11	Ν
836730630	2013	41542	1336	3	4	86	86070000	12	1890	0 M	11	Ν
836824930	2013	41586	2035	5	4	86	86070000	12	1525	0 M	11	S
838164990	2014	41826	911	7	4	86	86070000	12	1936	0 M	11	S
845194240	2014	41953	316	1	4	86	86070000	12	1890	0 M	11	Ν
845030330	2014	41896	400	7	4	86	86070000	12	1890	0 M	11	Ν
845562340	2014	41999	1709	5	4	86	86070000	12	1890	0 M	11	Ν
845706590	2015	42141	1009	7	4	86	86070000	12	1890	0 M	11	N
851755810	2015	42269	2115	2	4	86	86070000	12	1890	0 M	11	N
852250290	2015	42343	230	6	4	86	86070000	12	1890	0 M	11	N

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
838151640	2014	41899	1720	3	4	93	93220000	2	2127	0	MI	Ν
822443550	2011	40677	1755	6	4	93	93220000	2	2158	0	MI	S
828233120	2011	40804	17	7	4	93	93220000	2	2158	0	MI	S
836427630	2013	41459	2238	4	4	93	93220000	2	2158	0	MI	S
837096300	2013	41599	300	4	4	93	93220000	2	2158	0	MI	S
848840790	2015	42202	1902	5	4	93	93220000	2	2158	0	MI	S
819891040	2011	40678	10	7	4	93	93220000	3	2158	0	MI	S
836886600	2013	41609	2210	7	4	93	93220000	3	2158	0	MI	S
822443740	2011	40726	2355	6	4	93	93220000	3	2227	0	MI	S
837074190	2013	41587	255	6	4	93	93220000	3	2227	0	MI	S
836744460	2014	41676	127	4	4	93	93220000	3	2227	0	MI	S
845023170	2014	41908	730	5	4	93	93220000	3	2227	0	MI	S

`	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
852226750	2015	12/4/2015	15	5	4	93	93220000	22	4269	0	MI	Ν
820152620	2011	7/18/2011	1105	1	4	93	93220000	23	2259	0	MI	S
828956990	2012	9/15/2012	1337	6	4	93	93220000	23	2259	0	MI	S
844854960	2014	10/23/2014	340	4	4	93	93220000	23	2215	0	MI	S
828813680	2012	8/11/2012	1839	6	4	93	93220000	23	2259	0	MI	S
819765260	2012	8/12/2012	1520	7	4	93	93220000	23	4272	0	MI	Ν
828673750	2012	2/7/2012	1155	2	4	93	93220000	23	4272	0	MI	Ν
829068450	2013	7/10/2013	354	3	4	93	93220000	23	4272	0	MI	Ν
833029020	2013	7/19/2013	612	5	4	93	93220000	23	4272	0	MI	Ν
833029360	2013	11/9/2013	933	6	4	93	93220000	23	4272	0	MI	Ν
837352960	2014	4/11/2014	1637	5	4	93	93220000	23	4272	0	MI	Ν
838168800	2014	7/15/2014	1200	2	4	93	93220000	23	4272	0	MI	Ν
845009940	2014	9/18/2014	2140	4	4	93	93220000	23	4272	0	MI	Ν
833148620	2015	9/17/2015	830	4	4	93	93220000	23	4272	0	MI	Ν
820150070	2013	1/17/2013	55	4	4	93	93220000	23	2260	0	MI	S
832824610	2013	2/16/2013	56	6	4	93	93220000	23	2260	0	MI	S
848841730	2015	6/3/2015	1330	3	4	93	93220000	23	2216	0	MI	Ν
836922240	2013	12/14/2013	446	6	4	93	93220000	23	2260	0	MI	S
831726340	2012	8/25/2012	400	6	4	93	93220000	23	2216	0	MI	Ν
836561550	2013	9/13/2013	430	5	4	93	93220000	23	2216	0	MI	Ν
837086760	2013	11/20/2013	710	3	4	93	93220000	23	2216	0	MI	Ν
845009820	2014	9/11/2014	2321	4	4	93	93220000	23	2217	0	MI	S
833054870	2013	6/9/2013	1416	7	4	93	93220000	23	2217	0	MI	S
828150870	2012	4/13/2012	330	5	4	93	93220000	23	2217	0	MI	S
831770330	2012	10/2/2012	1711	2	4	93	93220000	23	2217	0	MI	S
831964110	2012	9/22/2012	1115	6	4	93	93220000	23	2217	0	MI	S
836847430	2013	9/17/2013	1025	2	4	93	93220000	24	2218	0	MI	S
828374670	2012	1/24/2012	500	2	4	93	93220000	24	2218	0	MI	Ν
844807010	2014	7/15/2014	1300	2	4	93	93220000	24	2262	0	MI	Ν

Crash_Nun	Calendar_	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_T	Roadway_l	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
819869340	2011	5/14/2011	1500	6	7	15	15190000	5.336	1209	0	MI	Ν
828250770	2011	9/6/2011	1855	2	7	15	15190000	5.346	1227	0	MI	S
820902060	2011	6/24/2011	2238	5	7	15	15190000	5.389	1227	0	MI	N
828250840	2011	9/10/2011	1230	6	5 7	15	15190000	5.56	1077	0	MI	Ν
820730680	2011	10/31/2011	605	1	. 7	15	15190000	5.573	1077	0	MI	Ν
828254410	2011	9/22/2011	2308	4	. 7	15	15190000	6.027	1081	0	MI	Ν
831706820	2012	6/25/2012	220	1	. 7	15	15190000	5.478	3678	0	MI	S
829099240	2012	6/1/2012	1008	5	7	15	15190000	5.599	1077	0	MI	Ν
820437450	2012	6/24/2012	1300	7	7	15	15190000	5.877	1080	0	MI	Ν
831565420	2012	5/24/2012	2127	4	. 7	15	15190000	6.144	1083	0	MI	S
833124670	2013	7/5/2013	1506	5	7	15	15190000	5.346	1227	0	MI	S
833051160	2013	5/1/2013	1510	3	7	15	15190000	5.484	3678	0		
837843470	2014	6/10/2014	1954	2	. 7	15	15190000	5.539	4180	0	MI	S
837480030	2014	3/24/2014	815	1	. 7	15	15190000	5.589	1077	0	MI	Ν
844873000	2014	8/22/2014	1323	5	7	15	15190000	5.819	1079	0	MI	Ν
845468800	2015	3/23/2015	835	1	. 7	15	15190000	5.308	1209	0	MI	S
848721420	2015	2/28/2015	1033	6	5 7	15	15190000	5.319	1209	0	MI	Ν
845550730	2015	4/28/2015	938	2	. 7	15	15190000	5.478	3678	0	MI	S
851519120	2015	8/31/2015	1330	1	. 7	15	15190000	5.589	1077	0	MI	Ν
851510040	2015	9/29/2015	36	2	. 7	15	15190000	5.819	1079	0	MI	N
851512060	2015	8/15/2015	1555	6	7	15	15190000	5.819	1079	0	MI	N
852001500	2015	11/22/2015	1220	7	7	15	15190000	5.819	1079	0	MI	N
851600880	2015	9/27/2015	1610	7	7	15	15190000	5.824	1079	0	MI	N
851195580	2015	7/14/2015	1135	2	7	15	15190000	5.828	1079	0	MI	N

Crash_Numb	Calendar_Y	Event_Cras	Event_Cr_1	Dhsmv_Day	Managing_D	Dept_Of_Tr	Roadway_Id	Crsh_Loc_F	Final_Ref	Crsh_Loc_1	Final_Meas	Crash_Loca
822402970	2011	6/24/2011	1230	5	7	15	15190000	7.409	1993	0	MI	N
822639420	2011	8/28/2011	2108	7	7	15	15190000	7.447	1993	0	MI	N
828154890	2011	8/9/2011	1253	2	7	15	15190000	7.541	2022	0	MI	S
822658630	2011	7/16/2011	1600	6	7	15	15190000	7.602	1994	0	MI	N
822679230	2011	8/16/2011	210	2	7	15	15190000	7.602	1994	0	MI	N
828154880	2011	8/9/2011	1425	2	7	15	15190000	7.672	1994	0	MI	N
822773010	2011	9/7/2011	0	3	7	15	15190000	7.842	4182	0	MI	S
831476420	2012	6/22/2012	2110	5	7	15	15190000	7.371	1993	0	MI	Ν
833368820	2013	6/29/2013	1200	6	7	15	15190000	7.452	2022	0	MI	S
833218590	2013	6/25/2013	2234	2	7	15	15190000	7.541	2022	0	MI	S
833132130	2013	9/24/2013	848	2	7	15	15190000	7.552	2022	0	MI	Ν
833384450	2013	7/17/2013	1643	3	7	15	15190000	7.602	1994	0	MI	Ν
837175380	2013	12/29/2013	1446	7	7	15	15190000	7.806	1994	0	MI	Ν
833283590	2013	7/13/2013	1727	6	7	15	15190000	7.818	1994	0	MI	Ν
832897460	2013	4/29/2013	59	1	7	15	15190000	8.092	2020	0	MI	Ν
836722510	2013	9/14/2013	1555	6	7	15	15190000	8.242	1996	0	MI	Ν
836544970	2013	7/26/2013	1031	5	7	15	15190000	8.304	2018	0	MI	S
844783870	2014	9/17/2014	923	3	7	15	15190000	7.55	2022	0		
844742740	2014	8/23/2014	1500	6	7	15	15190000	7.827	1994	0	MI	Ν
851876280	2015	8/30/2015	2139	7	7	15	15190000	7.409	1993	0	MI	Ν
851519050	2015	7/17/2015	1048	5	7	15	15190000	7.552	2022	0	MI	Ν
837825300	2015	3/27/2015	1800	5	7	15	15190000	7.602	1994	0	MI	Ν
845366550	2015	2/28/2015	1100	6	7	15	15190000	7.731	1994	0	MI	Ν
851891180	2015	9/28/2015	1811	1	7	15	15190000	7.818	1994	0	MI	N
845247670	2015	2/9/2015	1520	1	7	15	15190000	7.823	1994	0	MI	N
851165010	2015	6/9/2015	2321	2	7	15	15190000	8.19	1996	0	MI	S

Appendix I

Typical Sections for the Control Sites

CONTROL SITE 1- FLORIDA'S TURNPIKE N OF ATLANTIC BLVD

CONTROL SITE 2- FLORIDA'S TURNPIKE S OF COPAN'S RD

CONTROL SITE 3- FLORIDA'S TURNPIKE S OF GLADES RD

Appendix J

Highway Safety Manual (2010) Expected Crash Rate Analysis Outputs

Input Worksheet for Freeway Segments									
Cloar	Echo Input Values	Chack Input Values	Segment 1	Segment 2	Segment 3				
		Check input values	Study	Study	Study				
	(View results in Column AV)	(View results in Advisory Messages)	Period	Period	Period				
Basic Roa	adway Data								
Number of	through lanes (n):		0 0 lu Tania d C						
Segment l	egment description.		6-in Typical S	ection					
Alianmen	t Data		0.01						
Horizonta	l Curve Data	✓See note							
1	Horizontal curve in segmen	t?:	No						
	Curve radius (R ₁), ft:								
	Length of curve (L _{c1}), mi:								
	Length of curve in segment	(L _{c1 seq}), mi:							
2	Horizontal curve in segmen	t?:							
	Curve radius (R ₂), ft:								
	Length of curve (L _{c2}), mi:								
	Length of curve in segment	(L _{c2 seq}), mi:							
3	Horizontal curve in segmen	t?:							
	Curve radius (R ₃), ft:								
	Length of curve (L _{c3}), mi:								
	Length of curve in segment	(L _{c3.seg}), mi:							
Cross Sec	ction Data			1					
Lane width	n (W _I), ft:		12						
Outside sh	noulder width (W _s), ft:		10						
Inside sho	ulder width (W _{is}), ft:		10						
Median wie	dth (W _m), ft:		20						
Rumble sti	rips on outside shoulders?:		Yes						
	Length of rumble strips for travel i	n increasing milepost direction, mi:							
	Length of rumble strips for travel i	n decreasing milepost direction, mi:							
Rumble sti	rips on inside shoulders?:		Yes						
	Length of rumble strips for travel i	n increasing milepost direction, mi:							
Durana	Length of rumble strips for travel i	n decreasing milepost direction, mi:	Cantan						
Presence	of parrier in median:								
1	Length of barner (L _{ib,1}), mi.	d_{1}	0.01						
	Distance from edge of traveled	a way to partier face (w off,in,1), it:	0.01						
2	Distance from odro of travaler	d_{1}	0.01						
	Distance from edge of traveled	d way to parrier face (VV off,in,2), ft:	0.01						
3	Length of barrier $(L_{ib,3})$, fill.	$1 \dots 1 \dots$	0.01						
4	Distance from edge of traveled	a way to partier face (w off,in,3), it:	0.01						
4	Distance from edge of traveler	$\frac{1}{1000}$	0.01						
5	Length of barrier (L) mi:	a way to barrier face (w off,in,4), it.	0.01						
5	Distance from edge of traveler	$\frac{1}{1000}$	0.01						
Median ba	rrier width (W.) ft.	a way to Darrier lace (VV off,in,5), It.	0						
Nearest di	stance from edge of traveled	way to barrier face (W) ft.	0						
		, to same index (rear), it.	1	I					

Roadside	Data			
Clear zone	width (W _{hc}), ft:		30	
Presence of	of barrier on roadside:		None	
1	Length of barrier (L _{ob,1}), mi:			
	Distance from edge of traveled way to barrier face ($W_{off,}$	_{o,1}), ft:		
2	Length of barrier (L _{ob,2}), mi:			
	Distance from edge of traveled way to barrier face ($W_{off,}$	_{o,2}), ft:		
3	Length of barrier (L _{ob,3}), mi:			
	Distance from edge of traveled way to barrier face ($W_{off,}$	_{o,3}), ft:		
4	Length of barrier (L _{ob,4}), mi:			
	Distance from edge of traveled way to barrier face ($W_{off,}$	_{o,4}), ft:		
5	Length of barrier (L _{ob.5}), mi:			
	Distance from edge of traveled way to barrier face (W _{off.}	_{o.5}), ft:		
Distance from	n edge of traveled way to barrier face, increasing milepost (W _{off.inc}), ft:	,		
Distance from	n edge of traveled way to barrier face, decreasing milepost ($W_{off,dec}$), ft:			
Ramp Acc	ess Data			
Travel in l	ncreasing Milepost Direction			
Entrance	Ramp entrance in segment? (If yes, indicate type.):		No	
Ramp	Distance from begin milepost to upstream entrance ramp gore $(X_{b,ent})$, mi:		
	Length of ramp entrance (L _{en,inc}), mi:			
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:			
	Entrance side?:			
Exit	Ramp exit in segment? (If yes, indicate type.):		No	
Ramp	Distance from end milepost to downstream exit ramp gore ($X_{e,ext}$), mi:			
	Length of ramp exit (L _{ex,inc}), mi:			
	Length of ramp exit in segment (L _{ex,seg,inc}), mi:			
	Exit side?:			
Weave	Type B weave in segment?:		No	
	Length of weaving section (L _{wev,inc}), mi:			
	Length of weaving section in segment (L _{wev,seg,inc}), mi:			
Travel in I	Decreasing Milepost Direction			
Entrance	Ramp entrance in segment? (If yes, indicate type.):		No	
Ramp	Distance from end milepost to upstream entrance ramp gore ($X_{e,ent}$), r	ni:		
	Length of ramp entrance (L _{en,dec}), ml:			
	Length of ramp entrance in segment (L _{en,seg,dec}), mi:			
	Entrance side?:			
Exit	Ramp exit in segment? (If yes, indicate type.):		No	
Ramp	Distance from begin milepost to downstream exit ramp gore ($X_{b,ext}$), m	ni:		
	Length of ramp exit (L _{ex,dec}), mi:			
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:			
147	Exit side?:		NI-	
vveave	/eave Type B weave in segment?:		INO	
	Length of weaving section (L _{wev,dec}), mi:			
	Length of weaving section in segment (L _{wev,seg,dec}), ml:			
Traffic Data Year			0.45	
Proportion	or AADT during high-volume hours (Phv):		0.15	
Freeway S	Segment Data 2	2011	70000	

Average daily traffic (AADT _{fs}) by year, veh/d:	2012	75000	
(enter data only for those years for which	2013	80000	
it is available, leave other years blank)	2014	85000	
	2015	89000	
	2016		
	2017		
	2018		
	2019		
	2020		
	2021		
	2022		
	2023		
	2024		
	2025		
	2026		
	2027		
	2028		
	2029		
	2030		
	2031		
	2032		
	2033		
For the second second in the second	2034		
	fear		
Average daily traffic (AAD I _{b,ent}) by year, ven/d:	2011		
(enter data only for those years for which	2012		
it is available, leave other years blank)	2013		
	2014		
	2015		
	2016		
	2017		
	2018		
	2019		
	2020		
	2021		
	2022		
	2023		
	2024		
	2025		
	2020		
	2027		
	2020		
	2029		
	2030		
	2032		
	2033		
	2034		<u> </u>
Exit Ramp Data for Travel in Increasing Milepost Direction	Year		l
Average daily traffic (AADT) by year, yeb/d	2011		
(enter data only for those years for which	2011		
Center data only for those years for whitch	2012		

			Out	put Summ	ary				
General Information									
Project description:	Hydroplaning	Study - 6	6-In Expecte	ed Crash O	utcome				
Analyst:	AE		Date:	9/1/2018		Area type:		Urban	
First year of analysis:	2011								
Last year of analysis:	2015								
Crash Data Descript	ion								
Freeway segments	Segment cras	sh data a	vailable?		No	First year o			
	Project-level	crash dat	ta available'	?	No	Last year o	of crash data	a:	
Ramp segments	Segment cras	sh data a	vailable?		No	First year o	of crash data	a:	
	Project-level	crash dat	ta available	?	No	Last year c	of crash data	a:	
Ramp terminals	Segment cras	sh data a	vailable?		No	First year o	of crash data	a:	
	Project-level	crash dat	ta available	?	No	Last year o	of crash data	a:	
Estimated Crash Sta	tistics								
Crashes for Entire F	acility			Total	K	A	В	C	PDO
Estimated number of crashe	es during Study P	eriod, crash	nes:	294.1	0.8	3.3	22.4	68.0	199.6
Estimated average crash fre	eq. during Study F	Period, cras	hes/yr:	58.8	0.2	0.7	4.5	13.6	39.9
Crashes by Facility	Component		Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, ci	rashes:		1	135.1	0.6	1.6	10.8	22.7	99.4
Ramp segments, cras	hes:		6	7.5	0.1	0.2	1.1	1.7	4.4
Crossroad ramp terminals, crashes:			6	151.5	0.1	1.5	10.5	43.6	95.8
Crashes for Entire F	acility by Yea	r	Year	Total	K	Α	В	С	PDO
Estimated number of crashes during			2011	53.0	0.1	0.6	4.1	12.8	35.4
the Study Period, crashes:			2012	55.8	0.1	0.6	4.3	13.2	37.6
			2013	58.8	0.2	0.7	4.5	13.6	39.9
			2014	61.9	0.2	0.7	4.7	14.0	42.4
			2015	64.6	0.2	0.7	4.9	14.4	44.4
			2016						
			2017						
			2018						
			2019						
			2020						
			2021						
			2022						
			2023						
			2024						
			2025						
			2026						
			2027						
			2028						
			2029						
			2030						
			2031						
			2032						
			2033						
			2034						
Distribution of Crasi	nes for Entire	racility		_		_			
Crash Type	Crash 1	vpe Cat	eaorv	Estima	ated Numb	er of Crash	nes During	the Study	Period
		700 000	-9-1	Total	K	A	В	C	PDO
Multiple vehicle	Head-on cras	shes:		1.8	0.0	0.0	0.2	0.7	0.9
	Right-angle c	rashes:		41.7	0.0	0.5	3.3	13.0	24.9
	Rear-end cra	shes:		179.2	0.5	2.1	14.5	43.2	118.9
	Sideswipe cra	ashes:		48.4	0.1	0.3	2.4	5.8	39.7
	Other multiple	e-vehicle	crashes:	6.0	0.0	0.1	0.5	1.2	4.3
	Total multip	le-vehicle	e crashes:	277.2	0.7	3.0	20.9	63.9	188.7
Single vehicle	Crashes with	animal:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with	tixed obj	ect:	13.0	0.1	0.2	1.1	2.8	9.0
	Crashes with	other ob	ject:	0.4	0.0	0.0	0.0	0.1	0.3
	Crashes with	parked v	ehicle:	0.4	0.0	0.0	0.0	0.1	0.3
	Other single-vehicle crashes			3.0	0.0	0.1	0.4	1.2	1.3
	I otal single	-vehicle	crashes:	16.9	0.1	0.3	1.5	4.1	10.9
		otal crash	ies:	294.1	0.8	3.3	22.4	68.0	199.6

Input Worksheet for Freeway Segments									
Clear	Echo Input Values	Chock Input Values	Segment 1	Segment 2	Segment 3				
			Study	Study	Study				
	(View results in Column AV)	(View results in Advisory Messages)	Period	Period	Period				
Basic Roa	adway Data		0	1					
Number of	inrougn lanes (n):		0 9 In Typical S	Contion					
Segment le	egneni description. enath (L) mi		0.01	Section					
Alianmen	t Data								
Horizonta	l Curve Data	✓See note							
1	Horizontal curve in segmen	t?:	No						
	Curve radius (R ₁), ft:								
	Length of curve (L _{c1}), mi:								
	Length of curve in segment	(L _{c1.seq}), mi:							
2	Horizontal curve in segmen	t?:							
	Curve radius (R ₂), ft:								
	Length of curve (L _{c2}), mi:								
	Length of curve in segment	(L _{c2.seg}), mi:							
3	Horizontal curve in segmen	t?:							
	Curve radius (R ₃), ft:								
	Length of curve (L _{c3}), mi:								
	Length of curve in segment	(L _{c3,seg}), mi:							
Cross Sec	ction Data			1					
Lane width	n (W _I), ft:		12						
Outside sh	noulder width (W _s), ft:		10						
Inside sho	ulder width (W _{is}), ft:		10						
Median wie	dth (W _m), ft:		20						
Rumble str	rips on outside shoulders?:		Yes						
	Length of rumble strips for travel i	n increasing milepost direction, mi:							
	Length of rumble strips for travel i	n decreasing milepost direction, mi:							
Rumble str	rips on inside shoulders?:		Yes						
	Length of rumble strips for travel i	n increasing milepost direction, mi:							
Droconco	Length of rumble strips for travel in	n decreasing milepost direction, mi:	Contor						
	l ength of barrier (L) mit								
1	Distance from edge of travelec	1 way to barrier face (W)) ft:	0.01						
2	Length of barrier (L ,) mi	way to barrier face (w _{off,in,1}), it.	0.01						
2	Distance from edge of traveler	way to barrier face (W) ft:							
3	Length of barrier (L ,) mi	way to barrier lace (w _{off,in,2}), it.	0.01						
0	Distance from edge of traveler	way to barrier face (W ()) ft:							
4	Length of barrier (L _k) mi:	they to bernor race (w off,in,3), it.	0.01						
	Distance from edge of traveled	way to barrier face (Warran) ft							
		, 10 Samon 1000 (** off,in,4), 10	0.01						
5	Length of barrier (Libs) mi:		0.01						
5	Length of barrier (L _{ib,5}), mi: Distance from edge of traveled	way to barrier face (W_{adias}), ft:	0.01						
5 Median ba	Length of barrier (L _{ib,5}), mi: Distance from edge of traveled rrier width (W _{ib}), ft:	I way to barrier face (W _{off,in,5}), ft:	0.01						

Roadside	Data			
Clear zone	width (W _{hc}), ft:		30	
Presence of	of barrier on roadside:		None	
1	Length of barrier (L _{ob,1}), mi:			
	Distance from edge of traveled way to barrier face (V	V _{off,o,1}), ft:		
2	Length of barrier (L _{ob,2}), mi:			
	Distance from edge of traveled way to barrier face (V	V _{off,o,2}), ft:		
3	Length of barrier (L _{ob,3}), mi:			
	Distance from edge of traveled way to barrier face (V	V _{off,o,3}), ft:		
4	Length of barrier (L _{ob,4}), mi:			
	Distance from edge of traveled way to barrier face (V	V _{off,o,4}), ft:		
5	Length of barrier (L _{ob.5}), mi:			
	Distance from edge of traveled way to barrier face (V	V _{off o 5}), ft:		
Distance from	n edge of traveled way to barrier face, increasing milepost (W _{off inc}), ft:		
Distance from	n edge of traveled way to barrier face, decreasing milepost ($W_{off,de}$	_c), ft:		
Ramp Acc	cess Data			
Travel in l	ncreasing Milepost Direction			
Entrance	Ramp entrance in segment? (If yes, indicate type.):		No	
Ramp	Distance from begin milepost to upstream entrance ramp gore (X	, mi:		
	Length of ramp entrance (L _{en,inc}), mi:			
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:			
	Entrance side?:			
Exit	Ramp exit in segment? (If yes, indicate type.):		No	
Ramp	Distance from end milepost to downstream exit ramp gore $(X_{e,ext})$			
	Length of ramp exit (L _{ex,inc}), mi:			
	Length of ramp exit in segment (L _{ex,seg,inc}), mi:			
	Exit side?:			
Weave	Type B weave in segment?:		No	
	Length of weaving section (L _{wev,inc}), mi:	-		
	Length of weaving section in segment (L _{wev,seg,inc}), m	i:		
Travel in I	Decreasing Milepost Direction			
Entrance	Ramp entrance in segment? (If yes, indicate type.):		No	
Ramp	Distance from end milepost to upstream entrance ramp gore ($X_{e,i}$	_{ent}), mi:		
	Length of ramp entrance (L _{en,dec}), mi:			
	Length of ramp entrance in segment (L _{en,seg,dec}), mi:			
	Entrance side?:			
Exit	Ramp exit in segment? (If yes, indicate type.):		No	
Ramp	Distance from begin milepost to downstream exit ramp gore $(X_{b,e})$	_{xt}), mi:		
	Length of ramp exit (L _{ex,dec}), mi:			
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:			
	Exit side?:			
Weave	Veave Type B weave in segment?:		No	
	Length of weaving section (L _{wev,dec}), mi:			
	Length of weaving section in segment ($L_{wev,seg,dec}$), m	ni:		
Traffic Data				
Proportion	of AADT during high-volume hours (P _{hv}):		0.15	
Freeway S	Segment Data	2011	111000	

Average daily traffic (AADT _{fs}) by year, veh/d:	2012	116000	
(enter data only for those years for which	2013	121000	
it is available, leave other years blank)	2014	126000	
	2015	131000	
	2016		
	2017		
	2018		
	2019		
	2020		
	2021		
	2022		
	2023		
	2024		
	2025		
	2026		
	2027		
	2028		
	2029		
	2030		
	2031		
	2032		
	2033		
	2034		
Entrance Ramp Data for Travel in Increasing Milepost Dir.	Year		
Average daily traffic (AADT _{b,ent}) by year, veh/d:	2011		
(enter data only for those years for which	2012		
it is available, leave other years blank)	2013		
	2014		
	2015		
	2016		
	2017		
	2018		
	2019		
	2020		
	2021		
	2022		
	2023		
	2024		
	2025		
	2026		
	2027		
	2028		
	2029		
	2030		
	2031		
	2032		
	2033		
Exit Ramp Data for Travel in Increasing Miloport Direction	2034 Voar		
	1 eai		
Average daily traffic (AAD r _{e,ext}) by year, ven/d:	2011		
(enter data only for those years for which	2012		

		Out	tout Summa	arv				
General Informatio	n		.put ourini					
Project description:	Hydroplaning Study -	8-In Expecte	ed Crash Ou	tcome				
Analyst:	AE	Date:	9/1/2018		Area type:	L	Jrban	
First year of analysis	s: 2011	-						
Last year of analysis	: 2015							
Crash Data Descrip	otion							
Freeway segments	Segment crash data	available?		No	First year of	crash data:		
	Project-level crash da	ata available'	?	No	Last year of crash data:			
Ramp segments	Segment crash data	available?		No	First year of crash data:			
	Project-level crash da	ata availableʻ	?	No	Last year of crash data:			
Ramp terminals	Segment crash data	available?		No	First year of crash data:			
	Project-level crash da	ata availableʻ	?	No Last year of crash data:				
Estimated Crash S	tatistics							
Crashes for Entire	Facility		Total	K	Α	В	C	PDO
Estimated number of cras	hes during Study Period, cras	shes:	405.7	1.2	4.5	30.7	85.5	283.
Estimated average crash	freq. during Study Period, cra	ashes/yr:	81.1	0.2	0.9	6.1	17.1	56.
Crashes by Facility	Component	Nbr. Sites	Total	K	A	В	C	PDO
Freeway segments,	crashes:	1	246.7	1.1	2.7	19.2	40.2	183.
Ramp segments, cra	ashes:	6	7.5	0.1	0.2	1.1	1.7	4.4
Crossroad ramp terr	ninals, crashes:	6	151.5	0.1	1.5	10.5	43.6	95.8
Crashes for Entire	Facility by Year	Year	Total	K	Α	В	C	PDO
Estimated number o	f crashes during	2011	73.8	0.2	0.8	5.7	16.1	51.0
the Study Period, cra	ashes:	2012	77.4	0.2	0.9	5.9	16.6	53.8
		2013	81.0	0.2	0.9	6.1	17.1	56.0
		2014	84.8	0.3	0.9	6.4	17.6	59.
		2015	88.7	0.3	1.0	6.6	18.1	62.
		2016						
		2017						
		2018						
		2019						
		2020						
		2021	-					
		2022						
		2023						
		2024						
		2025						
		2020						
		2027			┨────┤			
		2020			┨────┤			
		2029			┨────┤			
		2030			<u>├</u>			
		2032						
		2032						
		2034			<u> </u>			
Distribution of Cra	shes for Entire Facilit	/						
		,	Estima	ted Numb	er of Crash	es Durina t	he Studv P	eriod
Crash Type	Crash Type Ca	tegory	Total	K	A	B	C	PDO
Nultiple vehicle	Head-on crashes:		2.2	0.0	0.0	0.3	0.8	1.1
	Right-angle crashes:	Right-angle crashes:		0.1	0.5	3.5	13.5	26.4
	Rear-end crashes:	Rear-end crashes:		0.9	3.0	20.8	56.3	176.
	Sideswipe crashes:	Sideswipe crashes:		0.2	0.6	3.9	9.0	62.
	Other multiple-vehicle crashes:		8.9	0.0	0.1	0.7	1.7	6.3
	Total multiple-vehicle crashes:		388.6	1.2	4.2	29.2	81.3	272.
Single vehicle	Crashes with animal:	Crashes with animal:		0.0	0.0	0.0	0.0	0.0
2	Crashes with fixed of	Crashes with fixed object:		0.1	0.2	1.1	2.8	9.
	Crashes with other o	bject:	0.4	0.0	0.0	0.0	0.1	0.3
	Crashes with parked vehicle:		0.4	0.0	0.0	0.0	0.1	0.3
	Other single-vehicle crashes					0.4	4.0	4
	Other single-vehicle	crashes	3.1	0.0	0.1	0.4	1.2	1.
	Other single-vehicle	crashes crashes:	3.1 17.1	0.0	0.1	1.6	4.2	1.3

Input Worksheet for Freeway Segments								
Cloar	Echo Input Values	Chack Input Values	Segment 1	Segment 2	Segment 3			
			Study	Study	Study			
	(View results in Column AV)	(View results in Advisory Messages)	Period	Period	Period			
Basic Roa	adway Data		10					
Number of	through lanes (n):		10 40 la Turrisol	Castian				
Segment l	ength (I) mi:		0.01	Section				
Alianmen	t Data							
Horizonta	l Curve Data	✓See note						
1	Horizontal curve in segmer	it?:	No					
	Curve radius (R ₁), ft:							
	Length of curve (L _{c1}), mi:							
	Length of curve in segment	t (L _{c1.sed}), mi:						
2	Horizontal curve in segmen	it?:						
	Curve radius (R ₂), ft:							
	Length of curve (L _{c2}), mi:							
	Length of curve in segment	: (L _{c2 seq}), mi:						
3	Horizontal curve in segmer	t?:						
_	Curve radius (R ₃), ft:							
	Length of curve (L _{c3}), mi:							
	Length of curve in segment	t (L _{c3.seg}), mi:						
Cross Sec	ction Data	,						
Lane width	ו (W _I), ft:		12					
Outside sh	noulder width (W _s), ft:		10					
Inside sho	ulder width (W _{is}), ft:		10					
Median wie	dth (W _m), ft:		20					
Rumble sti	rips on outside shoulders?:		Yes					
	Length of rumble strips for travel i	n increasing milepost direction, mi:						
	Length of rumble strips for travel i	n decreasing milepost direction, mi:						
Rumble sti	rips on inside shoulders?:		Yes					
	Length of rumble strips for travel i	n increasing milepost direction, mi:						
	Length of rumble strips for travel i	n decreasing milepost direction, mi:	Ocustor					
Presence	of parrier in median:		Center					
1	Length of barner (L _{ib,1}), mi.	d_{1}	0.01					
	Distance from edge of traveled	d way to parrier face (W off,in,1), ft:	0.01					
2	Distance from odre of travele	d_{1}	0.01					
2	Longth of barrier (I) mit	d way to partier face (w off,in,2), it:	0.01					
3	Distance from odre of trouble	d_{1}	0.01					
	Length of barrier (L) mit	u way to partier lace (W off,in,3), It:	0.01					
4	Distance from edge of traveler	$d_{\rm WOV}$ to barrier food (M)) ft:	0.01					
5	l ength of barrier (I) mi	a way to barrier lace (VV off,in,4), It.	0.01					
5	Distance from oddo of trouble	d_{Way} to barrier face (M) ft	0.01					
Median ha	rrier width (W.) ft.	u way to barrier lace (VV off,in,5), It.	0					
Nearest di	stance from edge of traveled	way to barrier face (W) ft	Ť					
		,	1	1				

Roadside	Data				
Clear zone	width (W _{hc}), ft:		30		
Presence of	of barrier on roadside:		None		
1	Length of barrier (L _{ob,1}), mi:				
	Distance from edge of traveled way to barrier face (V	V _{off,o,1}), ft:			
2	Length of barrier (L _{ob,2}), mi:				
	Distance from edge of traveled way to barrier face (V	V _{off,o,2}), ft:			
3	Length of barrier (L _{ob,3}), mi:				
	Distance from edge of traveled way to barrier face (V	V _{off,o,3}), ft:			
4	Length of barrier (L _{ob,4}), mi:				
	Distance from edge of traveled way to barrier face (V	V _{off,o,4}), ft:			
5	Length of barrier (L _{ob,5}), mi:				
	Distance from edge of traveled way to barrier face (V	V _{off.o.5}), ft:			
Distance from	n edge of traveled way to barrier face, increasing milepost (W _{off.inc})), ft:			
Distance from	h edge of traveled way to barrier face, decreasing milepost ($W_{\text{off,de}}$	_c), ft:			
Ramp Acc	ess Data				
Travel in I	ncreasing Milepost Direction				
Entrance	Ramp entrance in segment? (If yes, indicate type.):		No		
Ramp	Distance from begin milepost to upstream entrance ramp gore (X	_{b,ent}), mi:			
	Length of ramp entrance (L _{en,inc}), mi:				
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:				
	Entrance side?:				
Exit	Ramp exit in segment? (If yes, indicate type.):		No		
катр	Distance from end milepost to downstream exit ramp gore ($X_{e,ext}$)	, mi:			
	Length of ramp exit (L _{ex,inc}), mi:				
	Length of ramp exit in segment (L _{ex,seg,inc}), mi:				
Maaya	Exit side?:		No		
weave	Length of weaving section (I) mit		INO		
	Length of weaving section (L _{wev,inc}), fill.	i			
Trovalin	Length of weaving section in segment (Lwev, seg, inc), in			2	
Finite Fi	Decreasing immepost Direction		No		
Entrance	Ramp entrance in segment? (If yes, indicate type.).) mi:	INU		
ixamp	Length of ramp entrance $(I_{e,i})$ mit	ent), IIII.			
	Length of ramp entrance in segment (I) mit				
	Entrance side?				
Fxit	Ramp exit in segment? (If yes, indicate type):		No		
Ramp	Distance from begin milepost to downstream exit ramp gore (X _b	,, mi:	110		
	Length of ramp exit (Lex dec), mi:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Length of ramp exit in segment (Lex seg dec), mi:				
	Exit side?:				
Weave	Type B weave in segment?:		No		
	Length of weaving section (L _{wev dec}), mi:				
	Length of weaving section in segment (L _{wev.sea.dec}), m	ni:			
Traffic Da	ta	Year			
Proportion	of AADT during high-volume hours (P _{hv}):		0.15		
Freewav S	Segment Data	2011	151000		

Average daily traffic (AADT _{fs}) by year, veh/d:	2012	156000		
(enter data only for those years for which	2013	161000		
it is available, leave other years blank)	2014	166000		
	2015	171000		
	2016			
	2017			
	2018			
	2019			
	2020			
	2021			
	2022			
	2023			
	2024			
	2025			
	2026			
	2027			
	2028			
	2029			
	2030			
	2031			
	2032			
	2033			
Entrance Down Date for Troval in Increasing Milanest Dir	2034			
	1 ear			
Average daily traffic (AADT _{b,ent}) by year, ven/d:	2011			
(enter data only for those years for which	2012			
It is available, leave other years blank)	2013			
	2014			
	2015			
	2016			
	2017			
	2010			
	2019			
	2020			
	2021			
	2022			
	2023			
	2024			
	2020			
	2027			
	2028			
	2029			
	2030			
	2031			
	2032			
	2033			
	2034			1
Exit Ramp Data for Travel in Increasing Milepost Direction	Year		<u> </u>	
Average daily traffic (AADT _{e evt}) by year. veh/d:	2011			
(enter data only for those years for which	2012			
	2012		ļ	

		Out	tout Summa	arv				
General Informatio	n		.put ourini					
Project description:	Hydroplaning Study -	10-In Expec	ted Crash O	utcome				
Analyst:	AÉ	Date:	9/1/2018		Area type:	l	Jrban	
First year of analysis	s: 2011	·						
Last year of analysis	s: 2015							
Crash Data Descrij	otion							
Freeway segments	Segment crash data	available?		No	First year of	f crash data:	:	
	Project-level crash da	ata available'	?	No	Last year of	crash data:		
Ramp segments	Segment crash data	available?		No	First year of crash data:			
	Project-level crash da	ata available'	?	No	Last year of crash data:			
Ramp terminals	Segment crash data	available?		No	First year of crash data:			
	Project-level crash da	ata available'	?	No	No Last year of crash data:			
Estimated Crash S	tatistics							
Crashes for Entire	Facility		Total	K	A	В	С	PDO
Estimated number of cras	shes during Study Period, cras	shes:	482.5	1.5	5.2	35.4	95.3	345.1
Estimated average crash	freq. during Study Period, cra	shes/yr:	96.5	0.3	1.0	7.1	19.1	69.0
Crashes by Facility	/ Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway seaments.	crashes:	1	323.5	1.3	3.4	23.9	50.0	244.9
Ramp segments. cra	ashes:	6	7.5	0.1	0.2	1.1	1.7	4.4
Crossroad ramp terr	ninals, crashes:	6	151.5	0.1	1.5	10.5	43.6	95.8
Crashes for Entire	Facility by Year	Year	Total	K	Α	B	C	PDO
Estimated number of	f crashes during	2011	89.2	0.3	1.0	6.6	18.1	63 1
the Study Period, cr	ashes:	2012	92.8	0.3	1.0	6.9	18.6	66.0
		2013	96.4	0.3	1.0	7.1	19.1	68.9
		2014	100.1	0.3	1.0	7.3	19.5	71 0
		2015	103.9	0.3	1 1	7.5	20.0	75.
		2016	100.0	0.0		1.0	20.0	
		2017			1 1			
		2018						
		2019						
		2010						
		2020						
		2021						
		2022						
		2023			ł – – ł			
		2024						
		2025						
		2020			<u>├</u> ───┤			
		2027					 	
		2020						
		2029						
		2030					_	
		2031						
		2032			<u>├</u> ───┤			
		2033					_	
Distribution of Cro	shas for Entiro Escilit	2034						
	Sines for Little Facility	, 	Eatim -	tod Numb	or of Crock	oo During 4	ho Study F	oriod
Crash Type	Crash Type Ca	Crash Type Category				B B		
Multiple vehicle	Head on craches:			N 0.0	~	0.2		1 /
	Right-angle craches		2.0	0.0	0.0	0.3	12.9	۱.۱ ۱ ۲۰
	Poor ond craches:	Right-angle crashes:		0.1	0.0	ر ۵۸۵	13.0	21.3
	Sideswine crashes:	Kear-end crashes:		1.0	3.5 0.7	24.3 1 7	03.0	219.0
	Sideswipe crashes:		94./	0.2	0.7	4.7	10.7	70.4
	Tatal multiple-venicle crashes:		10.8	0.0	0.1	0.9	2.0	5.7
<u></u>	I otal multiple-vehic	I otal multiple-vehicle crashes:		1.4	4.9	33.9	91.1	333.
single vehicle	Crashes with animal:	Crashes with animal:		0.0	0.0	0.0	0.0	0.0
	Crashes with fixed ob	oject:	13.3	0.1	0.2	1.1	2.8	9.:
	Crashes with other of	oject:	0.4	0.0	0.0	0.0	0.1	0.3
	Crashes with parked	Crashes with parked vehicle:		0.0	0.0	0.0	0.1	0.3
	Other single-vehicle crashes		2.1	0.0	0.1	0.4	1.3	1.3
	Other single-vehicle		5.1	0.0				
	Total single-vehicle	crashes:	17.3	0.1	0.3	1.6	4.2	11.2